精英家教网 > 高中数学 > 题目详情
如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是(  )
分析:由已知中∠A=100°,∠C=30°,根据三角形内角和定理,可得∠B的大小,结合切线的性质,可得∠DOE的度数,再由圆周角定理即可得到∠DFE的度数.
解答:解:∠B=180°-∠A-∠C=180-100°-30°=50°
∠BDO+∠BEO=180°
∴B、D、O、E四点共圆
∴∠DOE=180°-∠B=180°-50°=130°
又∵∠DFE是圆周角,∠DOE是圆心角
∠DFE=
1
2
∠DOE=65°
故选C
点评:本题考查的知识点是圆周角定理,切线的性质,其中根据切线的性质判断出B、D、O、E四点共圆,进而求出∠DOE的度数是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,O是△ABC外任一点,若
OG
=
1
3
(
OA
+
OB
+
OC
)
,求证:G是△ABC重心(即三条边上中线的交点).
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丹东模拟)如图,⊙O是△ABC的外接圆,D是弧AC的中点,BD交AC于E. 
(I)求证:CD2=DE•DB.   
(II)若CD=2
3
O到AC的距离为1,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丹东模拟)选修4-1:几何证明选讲
如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.
(Ⅰ)求证:CD2=DE•DB;
(Ⅱ)若CD=2
3
,O到AC的距离为1,求⊙O的半径r.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,⊙O是△ABC的外接圆,延长BC边上的高AD交⊙O于点E,H为△ABC的垂心.求证:DH=DE.

查看答案和解析>>

同步练习册答案