【题目】 已知函数(,)的图像关于直线x=对称,最大值为3,且图像上相邻两个最高点的距离为.
(1)求的最小正周期;
(2)求函数的解析式;
(3)若,求.
【答案】(1)π;(2);(3).
【解析】
试题分析:(1)由函数的性质知,相邻两个最高点的距离就是函数的最小正周期;(2)最大值是A+1,直线x=是对称轴,则x=代入后是函数的最大值,可得2×+φ=kπ+,k∈Z,再结合的范围可得值,从而得解析式;(3)利用(2)的结论条件可化为,由同角关系式可得.
试题解析:(1)∵图像上相邻两个最高点的距离为.∴(x)的最小正周期T=π.……4分
(2)∵最大值为3, ∴A+1=3,∴A=2.
由(1)∴(x)的最小正周期T=π. ∴.
又因为f(x)的图像关于直线x=对称,
所以2×+φ=kπ+,k∈Z, 则φ=kπ-.
又,所以φ=-.
∴函数f(x)的解析式为
(3)∵,
∴, ∴
科目:高中数学 来源: 题型:
【题目】某车间将10名技工平均分为甲、乙两组加工某种零件,在单位时间内每名技工加工零件若干,其中合格零件的个数如下表:
1号 | 2号 | 3号 | 4号 | 5号 | |
甲组 | 4 | 5 | 7 | 9 | 10 |
乙组 | 5 | 6 | 7 | 8 | 9 |
(1)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组技工的技术水平;
(2)质检部门从该车间甲、乙两组中各随机抽取一名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,其焦点为.
(1)若点,求以为中点的抛物线的弦所在的直线方程;
(2)若互相垂直的直线都经过抛物线的焦点,且与抛物线相交于两点和两点,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x)万元,当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不少于80千件时,C(x)=51x+-1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
函数.
(1)当时,求函数的定义域;
(2)若,判断的奇偶性;
(3)是否存在实数,使函数在递增,并且最大值为1,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米.
(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com