精英家教网 > 高中数学 > 题目详情

【题目】已知函数为常数

(1)处取得极值时,若关于x的方程 上恰有两个不相等的实数根,求实数b的取值范围.

(2)若对任意的,总存在,使不等式 成立,求实数 的取值范围.

【答案】(1) ;(2).

【解析】试题分析:(1)对函数,令,可得的值,利用导数研究的单调性,然后求得的最值,即可得到的取值范围;(2)利用导数求出上的最大值,则问题等价于对对任意,不等式成立,然后构造新函数,再对求导,然后讨论,得出的单调性,即可求出的取值范围.

试题解析:(1),即,又所以,此时,所以上递减,上递增,

,所以

(2)

因为,所以,即

所以上单调递增,所以

问题等价于对任意,不等式成立

时,,所以在区间上单调递减,此时

所以不可能使恒成立,故必有,因为

,可知在区间上单调递增,在此区间上有满足要求

,可知在区间上递减,在此区间上有,与恒成立相矛盾,所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为(其中t为参数).现以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(Ⅰ) 写出直线的普通方程和曲线C 的直角坐标方程;

(Ⅱ) 过点且与直线平行的直线交曲线C 两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x+ ),g(x)= (x﹣ ).
(1)求函数h(x)=f(x)+2g(x)的零点;
(2)求函数F(x)=[f(x)]2n﹣[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点坐标分别为A(﹣1,1),B(7,﹣1),C(﹣2,5),AB边上的中线所在直线为l.
(1)求直线l的方程;
(2)若点A关于直线l的对称点为D,求△BCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检验学习情况,某培训机构于近期举办一场竞赛活动,分别从甲、乙两班各抽取10名学员的成绩进行统计分析,其成绩的茎叶图如图所示(单位:分),假设成绩不低于90分者命名为“优秀学员”.

(1)分别求甲、乙两班学员成绩的平均分(结果保留一位小数);

(2)从甲班4名优秀学员中抽取两人,从乙班2名80分以下的学员中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某钢管生产车间生产一批钢管,质检员从中抽出若干根对其直径(单位:)进行测量,得出这批钢管的直径服从正态分布.

(Ⅰ)如果钢管的直径满足为合格品,求该批钢管为合格品的概率(精确到0.01);

(Ⅱ)根据(Ⅰ)的结论,现要从40根该种钢管中任意挑选3根,求次品数的分布列和数学期望.

(参考数据:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:a,b,c∈(﹣∞,0),求证:a+ ,b+ ,c+ 中至少有一个不大于﹣2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若,求曲线的单调性;

2)若处取得极大值,求实数的取值范围.

查看答案和解析>>

同步练习册答案