精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E1(a>b>0)的离心率为,焦点到相应准线的距离为.

(1) 求椭圆E的标准方程;

(2) 已知P(t0)为椭圆E外一动点,过点P分别作直线l1l2,直线l1l2分别交椭圆E于点AB和点CD,且l1l2的斜率分别为定值k1k2,求证:为定值.

【答案】(1)y21(2)证明见解析

【解析】

1)题中已知条件为,则c,结合可求得椭圆标准方程;

2)设A(x1y1)B(x2y2),设直线l1的方程为yk1(xt),代入椭圆E的方程中,并化简,应用韦达定理得,代入化简,同理得,作比值可得定值.

(1)设椭圆的半焦距为c,由已知得,

,则cc2a2b2

解得a2b1c

所以椭圆E的标准方程是y21.

(2) 由题意,设直线l1的方程为yk1(xt),代入椭圆E的方程中,并化简得

(14)x28tx4t240

A(x1y1)B(x2y2)

x1x2x1x2

因为PA|x1t|PB|x2t|

所以PA·PB(1)|x1t||x2t|(1)|t2(x1x2)tx1x2|

(1)|t2|

同理,PC·PD

所以为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列{an}中,若an2an12p,(n≥2nN*p为常数),则称{an}等方差数列,下列是对等方差数列的判断:

①若{an}是等方差数列,则{an2}是等差数列;

{(﹣1n}是等方差数列;

③若{an}是等方差数列,则{akn}kN*k为常数)也是等方差数列;

④若{an}既是等方差数列,又是等差数列,则该数列为常数列.

其中正确命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位响应党中央精准扶贫号召,对某村6户贫困户中的甲户进行定点帮扶,每年跟踪调查统计一次,从201511日至201812月底统计数据如下(人均年纯收入):

年份

2015

2016

2017

2018

年份代码

1

2

3

4

收入(百元)

25

28

32

35

1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计甲户在2019年能否脱贫;(国家规定2019年脱贫标准:人均年纯收入为3747元)

22019年初,根据扶贫办的统计知,该村剩余5户贫困户中还有2户没有脱贫,现从这5户中抽取2户,求至少有一户没有脱贫的概率.

参考公式:,其中为数的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列各命题:

①两两相交且不共点的三条直线确定一个平面:

②若真线不平行于平面,则直线与平面有公共点:

③若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面的无数条直线:

④若两个二面角的两个面分别对应垂直,则这两个二面角相等或互补.

则其中正确的命题共有( )个

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知焦点在x轴上,离心率为的椭圆E的左顶点为A,点A到右准线的距离为6

1)求椭圆E的标准方程;

2)过点A且斜率为的直线与椭圆E交于点B,过点B与右焦点F的直线交椭圆EM点,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.

1)请将列联表填写完整:

有接触史

无接触史

总计

有武汉旅行史

27

无武汉旅行史

18

总计

27

54

2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时都取得极值.

(1)求的值与函数的单调区间;

(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数.

1)求实数k的值;

2)若,试判断函数的单调性,并求不等式的解集;

3)若,设上的最小值为-1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,阅读如图所示的程序框图,若输入的的值为,输出的的值恰为直线轴上的截距,且.

1)求直线的交点坐标;

2)若直线过直线的交点,且在轴上的截距是在轴上的截距的2倍,求的方程.

查看答案和解析>>

同步练习册答案