【题目】设双曲线x2﹣ =1的左、右焦点分别为F1、F2 , 若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是
科目:高中数学 来源: 题型:
【题目】如图,在中, ,点为的中点,点为线段垂直平分线上的一点,且,四边形为矩形,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的同侧,在移动过程中,当取得最小值时,点到直线的距离为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 , 则下列关于函数y=f[f(x)]+1的零点个数的判断正确的是( )
A.当k>0时,有3个零点;当k<0时,有2个零点
B.当k>0时,有4个零点;当k<0时,有1个零点
C.无论k为何值,均有2个零点
D.无论k为何值,均有4个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且a≠1,函数f(x)=loga(x+1), , 记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)﹣m=0在区间[0,1)内有解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(1)求的方程;
(2)是否存在直线与相交于两点,且满足:①与(为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+4ax+2a+6.
(1)若函数f(x)=log2 f(x)的最小值为2,求a的值;
(2)若对任意x∈R,都有f(x)≥0成立,求函数g(a)=2﹣a|a+3|的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册) | 2 | 3 | 4 | 5 | 8 |
单册成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数(千册) | 2 | 3 | 4 | 5 | 8 | |
单册成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较, 的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,PA=AB=3,BC=2,E、F分别是棱AD,PC的中点
(1)求证:EF⊥平面PBC
(2)若直线PC与平面ABCD所成角为 ,点P在AB上的射影O在靠近点B的一侧,求二面角P﹣EF﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=(log2x)2﹣2alog2x+b(x>0).当x= 时,f(x)有最小值﹣1.
(1)求a与b的值;
(2)求满足f(x)<0的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com