£¨2011•À¶É½ÏØÄ£Ä⣩ÒÑÖªµãÁÐB1£¨1£¬b1£©£¬B2£¨2£¬b2£©£¬¡­£¬Bn£¨n£¬bn£©£¬¡­£¨n¡ÊN?£©Ë³´ÎΪÅ×ÎïÏßy=
1
4
x2Éϵĵ㣬¹ýµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=
1
4
x2µÄÇÐÏß½»xÖáÓÚµãAn£¨an£¬0£©£¬µãCn£¨cn£¬0£©ÔÚxÖáÉÏ£¬ÇÒµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©ÇóÊýÁÐ{an}£¬{cn}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚnʹµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬ÈôÓУ¬ÇëÇó³ön£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÉèÊýÁÐ{
1
an•(
3
2
+cn)
}µÄÇ°nÏîºÍΪSn£¬ÇóÖ¤£º
2
3
¡ÜSn£¼
4
3
£®
·ÖÎö£º£¨1£©ÀûÓõ¼Êý£¬ÇóµÃµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=
1
4
x2µÄÇÐÏß·½³Ì£¬Áîy=0£¬¿ÉµÃan=
n
2
£¬¸ù¾ÝµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬¿ÉµÃan+cn=2n£¬ÓÉ´Ë¿ÉÇóÊýÁÐ{an}£¬{cn}µÄͨÏʽ£»
£¨2£©ÈôµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬Ôò|AnCn|=2bn£¬ÓÉ´Ë¿ÉÖª´æÔÚn=2£¬Ê¹µÈÑüÈý½ÇÐÎA2B2C2Ϊֱ½ÇÈý½ÇÐΣ»
£¨3£©
1
an•(
3
2
+cn)
=
1
n
2
(
3
2
+
3n
2
)
=
1
3
4
n(n+1)
=
4
3
£¨
1
n
-
1
n+1
£©£¬´Ó¶ø¿ÉÇóSn=
4
3
£¨1-
1
n+1
£©£¬½ø¶ø¿ÉÖª
2
3
¡ÜSn£¼
4
3
£®
½â´ð£º£¨1£©½â£º¡ßy=
1
4
x2£¬¡ày¡ä=
x
2
£¬y¡ä|x=n=
n
2
£¬
¡àµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=
1
4
x2µÄÇÐÏß·½³ÌΪ£ºy-
n2
4
=
n
2
£¨x-n£©£¬
Áîy=0£¬Ôòx=
n
2
£¬¼´an=
n
2
£»£¨3·Ö£©
¡ßµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬
¡àan+cn=2n£¬¡àcn=2n-an=
3n
2
  £¨5·Ö£©
£¨2£©½â£ºÈôµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬Ôò|AnCn|=2bn?
¡àn=
n2
2
£¬¡àn=2£¬
¡à´æÔÚn=2£¬Ê¹µÈÑüÈý½ÇÐÎA2B2C2Ϊֱ½ÇÈý½ÇÐΠ  £¨9·Ö£©
£¨3£©Ö¤Ã÷£º¡ß
1
an•(
3
2
+cn)
=
1
n
2
(
3
2
+
3n
2
)
=
1
3
4
n(n+1)
=
4
3
£¨
1
n
-
1
n+1
£©£¨11·Ö£©
¡àSn=
4
3
£¨1-
1
2
+
1
2
-
1
3
+¡­+
1
n
-
1
n+1
£©=
4
3
£¨1-
1
n+1
£©£¼
4
3

ÓÖ1-
1
n+1
ËænµÄÔö´ó¶øÔö´ó£¬
¡àµ±n=1ʱ£¬SnµÄ×îСֵΪ£º
4
3
£¨1-
1
1+1
£©=
2
3
£¬
¡à
2
3
¡ÜSn£¼
4
3
£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壬¿¼²éÁÑÏî·¨ÇóÊýÁеĺͣ¬¿¼²é²»µÈʽµÄÖ¤Ã÷£¬¿¼²éÊýÁÐÓë½âÎö¼¸ºÎµÄ×ۺϣ¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•À¶É½ÏØÄ£Ä⣩ÒÑÖªmÊÇÒ»¸ö¸ø¶¨µÄÕýÕûÊý£¬Èç¹ûÁ½¸öÕûÊýa£¬b±»m³ýµÃµÄÓàÊýÏàͬ£¬Ôò³ÆaÓëb¶ÔÄ£mͬÓ࣬¼Ç×÷a¡Ôb£¨modm£©£¬ÀýÈ磺5¡Ô13£¨mod4£©£®Èô22010¡Ôr£¨mod7£©£¬Ôòr¿ÉÒÔΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸