【题目】已知函数y=f(x)的定义域为{x|x∈R,且x≠2},且y=f(x+2)是偶函数,当x<2时,f(x)=|2x﹣1|,那么当x>2时,函数f(x)的递减区间是( )
A.(3,5)
B.(3,+∞)
C.(2,+∞)
D.(2,4]
【答案】D
【解析】解:∵y=f(x+2)是偶函数,∴f(﹣x+2)=f(x+2),
则函数f(x)关于x=2对称,
则f(x)=f(4﹣x).
若x>2,则4﹣x<2,
∵当x<2时,f(x)=|2x﹣1|,
∴当x>2时,f(x)=f(4﹣x)=|24﹣x﹣1|,
则当x≥4时,4﹣x≤0,24﹣x﹣1≤0,
此时f(x)=|24﹣x﹣1|=1﹣24﹣x=1﹣16 ,此时函数递增,
当2<x≤4时,4﹣x>0,24﹣x﹣1>0,
此时f(x)=|24﹣x﹣1|=24﹣x﹣1=16 ﹣1,此时函数递减,
所以函数的递减区间为(2,4],
故选:D.
根据函数的奇偶性,推导出函数的对称性,再由题意和对称性求出函数的解析式,根据指数函数的图象画出函数大致的图形,可得到函数的减区间.
科目:高中数学 来源: 题型:
【题目】如下图所示的几何体中, 为三棱柱,且,四边形为平行四边形, , .
(1)求证: ;
(2)若,求证: ;
(3)若,二面角的余弦值为若,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知任意角θ以x轴非负半轴为始边,若终边经过点P(x0 , y0),且|OP|=r(r>0),定义sicosθ= ,称“sicosθ”为“正余弦函数”.对于正余弦函数y=sicosx,有同学得到如下结论: ①该函数是偶函数;
②该函数的一个对称中心是( ,0);
③该函数的单调递减区间是[2kπ﹣ ,2kπ+ ],k∈Z.
④该函数的图象与直线y= 没有公共点;
以上结论中,所有正确的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=aln(x2+1)+bx,g(x)=bx2+2ax+b,(a>0,b>0).已知方程g(x)=0有两个不同的非零实根x1 , x2 .
(1)求证:x1+x2<﹣2;
(2)若实数λ满足等式f(x1)+f(x2)+3a﹣λb=0,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2为椭圆 的左、右焦点,F2在以 为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.
(1)求椭圆C1的方程;
(2)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函数f(x)= ﹣ cos2x
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈[0, ]时,求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四组函数中,表示相等函数的一组是( )
A.f(x)=1,g(x)=x0?
B.f(x)=|x|,g(t)=
C.f(x)= ,g(x)=x+1?
D.f(x)=lg(x+1)+lg(x﹣1),g(x)=lg(x2﹣1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com