【题目】如图所示,在底面是直角梯形的四棱锥中,侧棱底面,,,,,则点到平面的距离为( )
A. B. 2 C. D. 4
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,PA=PC=2.求证:
(1)PA⊥平面EBO;
(2)FG∥平面EBO.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5), 第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示。已知第三组的频数是第五组频数的3倍。
(1)求的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;
(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”。经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有,当时,有
(1)求f(1)的值;
(2)判断f(x)的单调性并加以证明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,角, , 所对的边分别为, , ,且.
(Ⅰ)求角的大小;
(Ⅱ)已知, 的面积为,求的周长.
【答案】(Ⅰ).(Ⅱ).
【解析】【试题分析】(I)利用正弦定理和三角形内角和定理化简已知,可求得的值,进而求得的大小.(II)利用余弦定理和三角形的面积公式列方程组求解的的值,进而求得三角形周长.
【试题解析】
(Ⅰ)由及正弦定理得, ,
,∴,
又∵,∴.
又∵,∴.
(Ⅱ)由, ,根据余弦定理得,
由的面积为,得.
所以 ,得,
所以周长.
【题型】解答题
【结束】
18
【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:
大棚面积(亩) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利润(万元) | 6 | 7 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且与有很强的线性相关关系.
(Ⅰ)求关于的线性回归方程;
(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;
(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?
参考数据: , .
参考公式: , .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com