精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在底面是直角梯形的四棱锥中,侧棱底面,则点到平面的距离为( )

A. B. 2 C. D. 4

【答案】A

【解析】

A为原点,ABx轴,ADy轴,APz轴,建立空间直角坐标系,利用向量法能求出AD到平面PBC的距离,即点D到平面的距离.

A为原点,ABx轴,ADy轴,APz轴,建立空间直角坐标系,

P(0,0,2),B(2,0,0),C(2,2,0),A(0,0,0),

=(2,0,﹣2),=(2,2,﹣2),=(2,0,0),

设平面PBC的法向量=(xyz),

x=1,得=(1,0,1),

ADBCAD平面PBCBC平面PBC

AD∥平面PBC,∴点D到平面PBC的距离即为AD到平面PBC的距离,

d

故答案为:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为2,且椭圆的离心率为.

(1)求椭圆的方程;

(2)过椭圆的上焦点作相互垂直的弦,求为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为函数的极值点.

(1)证明:当时,

(2)对于任意,都存在,使得,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面PAC⊥平面ABC,点EFO分别为线段PAPBAC的中点,点G是线段CO的中点,ABBCAC4PAPC2.求证:

1PA⊥平面EBO

2FG∥平面EBO

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若时,求函数的最小值;

(2)若,证明:函数有且只有一个零点;

(3)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5), 第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示。已知第三组的频数是第五组频数的3倍。

(1)求的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;

(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”。经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有,当时,有

(1)求f(1)的值;

(2)判断f(x)的单调性并加以证明;

(3)若f(4)=2,求f(x)在[1,16]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角 所对的边分别为 ,且.

(Ⅰ)求角的大小;

(Ⅱ)已知 的面积为,求的周长.

【答案】(Ⅰ).(Ⅱ).

【解析】试题分析】(I)利用正弦定理和三角形内角和定理化简已知,可求得的值,进而求得的大小.(II)利用余弦定理和三角形的面积公式列方程组求解的的值,进而求得三角形周长.

试题解析】

(Ⅰ)由及正弦定理得,

,∴

又∵,∴.

又∵,∴.

(Ⅱ)由 ,根据余弦定理得

的面积为,得.

所以 ,得

所以周长.

型】解答
束】
18

【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:

大棚面积(亩)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

年利润(万元)

6

7

7.4

8.1

8.9

9.6

11.1

由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且有很强的线性相关关系.

(Ⅰ)求关于的线性回归方程;

(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;

(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?

参考数据: .

参考公式: .

查看答案和解析>>

同步练习册答案