【题目】设椭圆 的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为 ,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|> .
【答案】
(1)解:设P(x0,y0),∴ ①
∵椭圆 的左右顶点分别为A,B,∴A(﹣a,0),B(a,0)
∴ ,
∵直线AP与BP的斜率之积为 ,∴
代入①并整理得
∵y0≠0,∴a2=2b2
∴
∴
∴椭圆的离心率为 ;
(2)证明:依题意,直线OP的方程为y=kx,设P(x0,kx0),∴
∵a>b>0,kx0≠0,∴
∴ ②
∵|AP|=|OA|,A(﹣a,0),
∴
∴
∴
代入②得
∴k2>3
∴直线OP的斜率k满足|k|>
【解析】(1)设P(x0 , y0),则 ,利用直线AP与BP的斜率之积为 ,即可求得椭圆的离心率;(2)依题意,直线OP的方程为y=kx,设P(x0 , kx0),则 ,进一步可得 ,利用AP|=|OA|,A(﹣a,0),可求得 ,从而可求直线OP的斜率的范围.
科目:高中数学 来源: 题型:
【题目】如图,椭圆C: =1(a>b>0)的离心率为 ,其左焦点到点P(2,1)的距离为 ,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.
(1)求椭圆C的方程;
(2)求△APB面积取最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式及数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,其前n项和为Sn , {bn}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 证明:Tn+12=﹣2an+10bn(n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A.1800元
B.2400元
C.2800元
D.3100元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有大小、形状完全相同的四个小球,分别写有和、“谐”、“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生到之间取整数值的随机数,分别用,,,代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:
由此可以估计,恰好第三次就停止摸球的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小金同学在学校中贯彻着“边玩边学”的学风,他在“汉诺塔”的游戏中发现了数列递推的奥妙:有、、三个木桩,木桩上套有编号分别为、、、、、、的七个圆环,规定每次只能将一个圆环从一个木桩移动到另一个木桩,且任意一个木桩上不能出现“编号较大的圆环在编号较小的圆环之上”的情况,现要将这七个圆环全部套到木桩上,则所需的最少次数为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,,,,,(单位:克)中,经统计的频率分布直方图如图所示.
(1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);
(2)现按分层抽样从质量为[200,250),[250,300)的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;
(3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:
方案①:所有芒果以9元/千克收购;
方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.
通过计算确定种植园选择哪种方案获利更多.
参考数据:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com