已知函数,其中
为大于零的常数,
,函数
的图像与坐标轴交点处的切线为
,函数
的图像与直线
交点处的切线为
,且
.
(I)若在闭区间上存在
使不等式
成立,求实数
的取值范围;
(II)对于函数和
公共定义域内的任意实数
,我们把
的值称为两函数在
处的偏差.求证:函数
和
在其公共定义域内的所有偏差都大于2.
(Ⅰ);(Ⅱ)详见解析.
解析试题分析:(Ⅰ)利用参数分离法将不等式问题转化为,等价转化为
处理,于是问题的核心就是求函数
,利用导数求解,但同时需要注意题中的隐含条件将
的值确定下来;
(Ⅱ)先确定函数与函数
的解析式,然后引入函数
,通过证明
,进而得到
,得到
,于是就说明原结论成立.
试题解析:解(Ⅰ)函数的图象与坐标轴的交点为
,
又
函数的图象与直线
的交点为
,
又
由题意可知,
又,所以
3分
不等式可化为
,即
令,则
,
又时,
,
,
故,
在
上是减函数
即在
上是减函数
因此,在对任意的,不等式
成立,
只需
所以实数的取值范围是
8分
(Ⅱ)证明:和
的公共定义域为
,由(Ⅰ)可知
,
令,则
,
在
上是增函数
故,即
①
令,则
,
当时,
;当
时,
,
有最大值
,因此
②
由①②得,即
又由①得,由②得
故函数和
在其公共定义域的所有偏差都大于2 &nb
科目:高中数学 来源: 题型:解答题
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数与两坐标轴分别交于不同的三点A、B、C.
(1)求实数t的取值范围;
(2)当时,求经过A、B、C三点的圆F的方程;
(3)过原点作两条相互垂直的直线分别交圆F于M、N、P、Q四点,求四边形的面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
⑴ 求函数的单调区间;
⑵ 如果对于任意的,
总成立,求实数
的取值范围;
⑶ 设函数,
. 过点
作函数
图像的所有切线,令各切点的横坐标构成数列
,求数列
的所有项之和
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)已知函数,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.
(Ⅰ)指出函数f(x)的单调区间;
(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2﹣x1≥1;
(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为了降低能源损耗,某城市对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及
的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设是定义在
的可导函数,且不恒为0,记
.若对定义域内的每一个
,总有
,则称
为“
阶负函数 ”;若对定义域内的每一个
,总有
,则称
为“
阶不减函数”(
为函数
的导函数).
(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数
的取值范围;
(2)对任给的“2阶不减函数”,如果存在常数
,使得
恒成立,试判断
是否为“2阶负函数”?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com