精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的通项公式为an=-3n+104,求数列{|an|}前n项和Tn

分析 设数列{an}的前n项和为Sn,则Sn=$\frac{n(101+104-3n)}{2}$,由an≥0,解得n≤34.当n≤34时,数列{|an|}前n项和Tn=Sn.当n≥35时,数列{|an|}前n项和Tn=2S34-Sn,即可得出.

解答 解:设数列{an}的前n项和为Sn,则Sn=$\frac{n(101+104-3n)}{2}$=$-\frac{3}{2}{n}^{2}$+$\frac{205}{2}n$.
由an=-3n+104≥0,解得$n≤34+\frac{2}{3}$,因此n≤34.
当n≤34时,数列{|an|}前n项和Tn=a1+a2+…+an=Sn=$-\frac{3}{2}{n}^{2}$+$\frac{205}{2}n$.
当n≥35时,数列{|an|}前n项和Tn=a1+a2+…a34-a35-…-an
=2S34-Sn
=$2×(-\frac{3}{2}×3{4}^{2}+\frac{205}{2}×34)$-($-\frac{3}{2}{n}^{2}$+$\frac{205}{2}n$)
=3502+$\frac{3}{2}{n}^{2}$-$\frac{205}{2}n$.
∴Tn=$\left\{\begin{array}{l}{-\frac{3}{2}{n}^{2}+\frac{205}{2}n,n≤34}\\{\frac{3}{2}{n}^{2}-\frac{205}{2}n+3502,n≥35}\end{array}\right.$(n∈N*).

点评 本题考查了含绝对值的数列求和问题、等差数列的通项公式及其前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{\sqrt{1+si{n}^{2}x}+sinx-1}{\sqrt{1+si{n}^{2}x}+sinx+1}$,其中x∈R.
(Ⅰ)证明:2π是函数f(x)的周期;
(Ⅱ)①指出并证明函数f(x)的奇偶性;
②写出(不必说明理由)函数y=f(x)图象的一条对称轴;
(Ⅲ)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=xex在R上取得最小值1-$\frac{1}{e}$,则函数g(x)=$\frac{f(x)}{{e}^{x}}$在区间(-∞,0)上一定(  )
A.有最小值B.有最大值C.是减函数D.是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合M含有三个元素1,2,x2,则x的取值范围为x≠±1且x≠±$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若对任意的x∈R,都有x3≤ax(a>0且a≠1),则实数a的取值范围为[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f($\frac{1}{x}$)=x2+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知i为虚数单位,复数z满足zi=$\sqrt{2}$+2i,则|z|=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线l1:ax+(1-a)y+3=0与直线l2:(1-a)x+(2a-1)y-5=0互相垂直,则实数a的值为1或$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={-1,2},B={x|mx+1=0},若B⊆A,则m的可能取值组成的集合为{0,1,-$\frac{1}{2}$}.

查看答案和解析>>

同步练习册答案