【题目】如图1,在直角梯形中,,,,,,点E在上,且,将三角形沿线段折起到的位置,(如图2).
(1)求证:平面平面;
(2)在线段上是否存在点M,使平面?若存在,求出的值;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的普通方程为,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(I)求的参数方程与的直角坐标方程;
(II)射线与交于异于极点的点,与的交点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且.
(1)若为等差数列,且
①求该等差数列的公差;
②设数列满足,则当为何值时,最大?请说明理由;
(2)若还同时满足:
①为等比数列;
②;
③对任意的正整数存在自然数,使得、、依次成等差数列,试求数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间,9:40~10:00记作,10:00~10:20记作,10:20~10:40记作.例如:10点04分,记作时刻64.
(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为,且离心率为.
(1)求椭圆的标准方程;
(2)设椭圆的左焦点为,点是椭圆与轴负半轴的交点,经过的直线与椭圆交于点,经过且与平行的直线与椭圆交于点,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出吨该商品可获利润万元,未售出的商品,每吨亏损万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了吨该商品.现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
(1)将表示为的函数,求出该函数表达式;
(2)根据直方图估计利润不少于57万元的概率;
(3)根据频率分布直方图,估计一个销售季度内市场需求量的平均数与中位数的大小(保留到小数点后一位).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标中,圆,圆。
(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示);
(Ⅱ)求圆的公共弦的参数方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(1)求曲线C1和曲线C2的直角坐标方程;
(2)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com