【题目】已知椭圆,为椭圆的左、右焦点,点在直线上且不在轴上,直线与椭圆的交点分别为和,为坐标原点.
设直线的斜率为,证明:
问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,垂直于梯形所在的平面,为的中点,,四边形为矩形,线段交于点.
(1)求证:平面;
(2)求二面角的正弦值;
(3)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的两个焦点,,设,分别是椭圆的上、下顶点,且四边形的面积为,其内切圆周长为.
(1)求椭圆的方程;
(2)当时,,为椭圆上的动点,且,试问:直线是否恒过一定点?若是,求出此定点坐标,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的两个焦点,,设,分别是椭圆的上、下顶点,且四边形的面积为,其内切圆周长为.
(1)求椭圆的方程;
(2)当时,,为椭圆上的动点,且,试问:直线是否恒过一定点?若是,求出此定点坐标,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校研究性学习小组对该校高三学生的视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如下直方图:
年级名次/是否近视 | 1-50 | 951-1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如上述表格中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系;
(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com