(本小题满分14分)已知函数,.(其中为自然对数的底数),
(Ⅰ)设曲线在处的切线与直线垂直,求的值;
(Ⅱ)若对于任意实数≥0,恒成立,试确定实数的取值范围;
(Ⅲ)当时,是否存在实数,使曲线C:在点
处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.
(1)=-1;(2);(3)不存在实数,使曲线C:在点处的切线与轴垂直.
【解析】
试题分析:(Ⅰ), …1分 , 在处的切线的斜率为,…2分
又直线的斜率为, ………………………3分
∴()=-1,∴ =-1. ……………………5分
(Ⅱ)∵当≥0时,恒成立,∴ 先考虑=0,此时,,
可为任意实数; ………………………6分
又当>0时,恒成立,则恒成立, …………7分
设=,则=,
当∈(0,1)时,>0,在(0,1)上单调递增,当∈(1,+∞)时,<0,在(1,+∞)上单调递减,故当=1时,取得极大值,, ………9分
∴ 要使≥0,恒成立,>-,∴ 实数的取值范围为. …10分
(Ⅲ)依题意,曲线C的方程为,
令=,则=
设,则,
当,,故在上的最小值为,…………………12分
所以≥0,又,∴>0,
而若曲线C:在点处的切线与轴垂直,则=0,矛盾。 …13分
所以,不存在实数,使曲线C:在点处的切线与轴垂直.…14分
考点:导数的几何意义;直线垂直的条件;导数在研究函数中的应用。
点评:解决恒成立问题常用变量分离法,变量分离法主要通过两个基本思想解决恒成立问题, 思路1:在上恒成立;思路2: 在上恒成立。
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com