精英家教网 > 高中数学 > 题目详情

【题目】对于函数fx)=(|x﹣2|+1)4,给出如下三个命题:①fx+2)是偶函数;②fx)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③fx)没有最小值.其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 0

【答案】B

【解析】

由函数奇偶性的定义可判断正确;讨论x>2,x<2,可以去掉绝对值,求得fx),再利用复合函数判定单调性,即可判断正确;由fx)的单调性可判断错误。

函数fx)=(|x﹣2|+1)4

gx)=fx+2)=(|x|+1)4

gx定义域为R,且g(﹣x)=gx),可得gx)是偶函数,故正确;

x>2fx)=(x﹣1)4=x﹣1)2,,

=x﹣1)2x>2时单调递增时单调递增,所以x>2时,fx)=(x﹣1)4 单调递增

x<2时,fx)=(3﹣x4=(3﹣x2,,

t=(3﹣x2x<2时单调递减时单调递增,所以x<2时,fx)=(3﹣x4单调递减。故正确;

可得fx)在x=2处取得最小值1,故错误.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是双曲线上一点, 分别是双曲线的左、右顶点,直线的斜率之积为.

(1)求双曲线的离心率;

(2)过双曲线的右焦点且斜率为的直线交双曲线于两点, 为坐标原点, 为双曲线上一点,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为“常喝”,体重超过为“肥胖”.

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部人中随机抽取人,抽到肥胖的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由;

(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个有关健康饮食的电视节目,求恰好抽到一名男生和一名女生的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,AD=CD

(1)证明:ACBD

(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某粮库拟建一个储粮仓如图所示,其下部是高为2的圆柱,上部是母线长为2的圆锥,现要设计其底面半径和上部圆锥的高,若设圆锥的高,储粮仓的体积为.

(1)求关于的函数关系式;(圆周率用表示)

(2)求为何值时,储粮仓的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求的单调区间.

)当时,求函数在区间上的最小值.

)在条件()下,当最小值为时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣5:不等式选讲
已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三个不同的解,求a的取值范围.

查看答案和解析>>

同步练习册答案