精英家教网 > 高中数学 > 题目详情

【题目】2017年5月27日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.

【答案】(1)见解析;(2).

【解析】试题分析:(1)根据频率分布直方图可计算出在抽取的100人中,“围棋迷”有25人,即可完成表格,计算的值可得结果;(2)按照分层抽样性质可得抽取的5名学生中,有男生3名,有女生2名利用列举法结合古典概型概率计算公式可得结果.

试题解析:(1)由频率分布直方图可知,

所以在抽取的100人中,“围棋迷”有25人,

从而列联表如下

非围棋迷

围棋迷

合计

30

15

45

45

10

55

合计

75

25

100

因为,所以没有95%的把握认为“围棋迷”与性别有关.

2)由(1)中列联表可知25名“围棋迷”中有男生15名,女生10名,所以从“围棋迷”中按性别分层抽样抽取的5名学生中,有男生3名,记为,有女生2名,记为则从5名学生中随机抽取2人出赛,基本事件有: ,共10种; 其中2人恰好一男一女的有: ,共6种;

2人恰好一男一女的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位安排7位员工对一周的7个夜晚值班,每位员工值一个夜班且不重复值班,其中员工甲必须安排在星期一或星期二值班,员工乙不能安排在星期二值班,员工丙必须安排在星期五值班,则这个单位安排夜晚值班的方案共有(

A. 96B. 144C. 200D. 216

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一”期间,某淘宝店主对其商品的上架时间(小时)和销售量(件)的关系作了统计,得到了如下数据并研究.

上架时间

2

4

6

8

10

12

销售量

64

138

205

285

360

430

(1)求表中销售量的平均数和中位数;

(2)① 作出散点图,并判断变量是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程

②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想.

附:线性回归方程中, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为1的扇形AOB中(O为原点),.点Pxy)是上任意一点,则xy+x+y的最大值为(  )

A. B. 1 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为2,分别为的中点,则(

A.直线与直线垂直B.直线与平面平行

C.平面截正方体所得的截面面积为D.与点到平面的距离相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题函数的值域为;命题,不等式恒成立,如果命题“”为真命题,且“”为假命题,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 分别为椭圆 的上、下焦点, 是抛物线 的焦点,点在第二象限的交点,且

(1)求椭圆的方程;

(2)与圆相切的直线 (其中)交椭圆于点 ,若椭圆上一点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:

1)填充频率分布表的空格(将答案直接填在表格内);

2)补全频数分布直方图;

3)若成绩在75.585的学生为二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线.

(Ⅰ)求曲线的方程;

(Ⅱ) 是曲线上的动点,且直线经过定点,问在轴上是否存在定点,使得,若存在,请求出定点,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案