A. | p∧(¬q) | B. | (¬p)∧q | C. | (¬p)∧(¬q) | D. | p∧q |
分析 先判断命题p和命题q的真假,进而根据复合命题真假判断的真值表,可得答案.
解答 解:对于命题p,
直线$x+2y-\sqrt{2}=0$与直线$x+2y-6\sqrt{2}=0$的距离$d=\frac{|-\sqrt{2}+6\sqrt{2}|}{\sqrt{1+{2}^{2}}}$=$\sqrt{10}$>1,
所以命题p为假命题,于是¬p为真命题;
对于命题q,
椭圆2x2+27y2=54与双曲线9x2-16y2=144有相同的焦点(±5,0),
故q为真命题,
从而(¬p)∧q为真命题.
p∧(¬q),(¬p)∧(¬q),p∧q为假命题,
故选:B
点评 本题以命题的真假判断与应用为载体,直线与直线的距离,复合命题,椭圆和双曲线的简单性质等知识点,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{8}$ | C. | $\frac{7}{16}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
x(百元) | 5 | 6 | 7 | 8 | 9 |
y(件) | 10 | 8 | 9 | 6 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\vec a+\vec b-\vec c$ | B. | $\vec c-\vec a-\vec b$ | C. | $\vec c+\vec a-\vec b$ | D. | $\vec a+\vec b+\vec c$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | 1 | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com