精英家教网 > 高中数学 > 题目详情
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(
3
,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+1与双曲线C恒有两个不同的交点A和B,P是弦AB的中点,OP的斜率为
2
3
(其中O为原点),求k的值.
分析:(1)由双曲线的右焦点与右顶点易知其标准方程中的c、a,进而求得b,则双曲线标准方程即得;
(2)直线l与双曲线法才联立消去y,设A(x1,y1),B(x2,y2),利用韦达定理表示出x1+x2和x1x2,依据以线段AB的中点求得p点坐标,进而利用斜率是
2
3
,求出k 的值..
解答:解:(1)设双曲线方程为
x2
a2
-
y2
b2
=1
(a>0,b>0).
由已知得 a=
3
,c=2,再由a2+b2=22,得b2=1

故双曲线C的方程为
x2
3
-y2=1

(2)联立
y=kx+1
x2
3
-y2=1
得:(1-3k2)x2-6kx-6=0
△=36k2+24(1-k2)>0得:3k2<2
∵1-3k2≠0
∴3k2<2  3k2≠1
设A(x1,y1),B(x2,y2),则x1+x2=
6k
1-3k2
  x1x2=-
-6
1-3k2

∴p点坐标为(
3k
1-3k2
1
1-3k2

∵kop=
2
3
 
1
3k
=
2
3

∴k=
1
2
点评:本题考查双曲线的标准方程与性质以及直线和圆锥曲线的位置关系,类题是历年高考命题的热点,试题具有一定的综合性,覆盖面大,字母运算能力是一大考验.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年龙岩一中冲刺文)(分)已知双曲线C的中心在原点,焦点在x轴上,右准线为一条渐近线的方程是过双曲线C的右焦点F2的一条弦交双曲线右支于P、Q两点,R是弦PQ的中点.

   (1)求双曲线C的方程;

   (2)若A、B分别是双曲C上两条渐近线上的动点,且2|AB|=|F1F2|,求线段AB的中点M的迹方程,并说明该轨迹是什么曲线。

   (3)若在双曲线右准线L的左侧能作出直线m:x=a,使点R在直线m上的射影S满足,当点P在曲线C上运动时,求a的取值范围.

查看答案和解析>>

同步练习册答案