精英家教网 > 高中数学 > 题目详情
18.已知集合 A={-2,-1,0,2,3},B={y|y=x2-1,x∈A},则A∩B中元素的个数是(  )
A.2B.3C.4D.5

分析 先分别求出集体合A和B,由此以求出A∩B中元素的个数.

解答 解:∵集合 A={-2,-1,0,2,3},
B={y|y=x2-1,x∈A}={-1,0,3,8},
∴A∩B={-1,0,3},
∴A∩B中元素的个数是3.
故选:B.

点评 本题考查A∩B中元素的个数的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知偶函数f(x)在[0,+∞)上是增函数,且f(1)=0,则满足f(log${\;}_{\frac{1}{2}}$x)>0的x的取值范围是(  )
A.(0,+∞)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(0,$\frac{1}{2}$)D.(0,$\frac{1}{2}$)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从数字1,2,3,4,5,6中任取两个数,则取出的两个数的乘积为奇数的概率为(  )
A.$\frac{1}{15}$B.$\frac{2}{15}$C.$\frac{1}{5}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)={x^3}+\frac{5}{2}{x^2}+ax+b({a,b∈R})$,函数f(x)的图象记为曲线C.
(1)若函数f(x)在x=-1时取得极大值2,求a,b的值;
(2)若函数$F(x)=2f(x)-\frac{5}{2}{x^2}-({2a-1})x-3b$存在三个不同的零点,求实数b的取值范围;
(3)设动点A(x0,f(x0))处的切线l1与曲线 C交于另一点B,点B处的切线为l2,两切线的斜率分别为k1,k2,当a为何值时存在常数λ使得k2=λk1?并求出λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.图中的三个直角三角形是一个体积为20cm3几何体的三视图,则h=(  )
A.4B.5C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列 {an},{bn}满足 bn=an+an+1,则“数列{an}为等差数列”是“数列{bn}为 等差数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式$\frac{1}{x}$>1的解集为(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面为边长为1的正方形,侧棱AA1=2
(1)求直线DC与平面ADB1所成角的大小;
(2)在棱上AA1是否存在一点P,使得二面角A-B1C1-P的大小为30°,若存在,确定P的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题错误的是(  )
A.命题“若x2=1,则x=1”的否定形式为:“若x2=1,则x≠1”.
B.命题“若x2+y2=0,则x=y=0”的逆否命题为真.
C.△ABC中,sinA>sinB是A>B的充要条件.
D.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\vec a$与$\vec b$的夹角为锐角.

查看答案和解析>>

同步练习册答案