精英家教网 > 高中数学 > 题目详情
椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点和短轴的两个端点都在圆x2+y2-1上,过右焦点作相互相垂直的两条弦AB,CD,设M,N分别为AB,CD的中点.
(1)求椭圆的方程;
(2)证明直线MN恒过定点,并求该定点的坐标.
分析:(1)根据椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点和短轴的两个端点都在圆x2+y2-1上,可得b=c=1,从而可求椭圆的方程;
(2)直线AB的方程与椭圆方程联立,确定M、N的坐标,可得直线MN的方程,化简即可得到直线MN恒过定点.
解答:(1)解:由题意,椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点和短轴的两个端点都在圆x2+y2-1上
∴b=c=1,∴a2=b2+c2=2
∴椭圆的方程为
x2
2
+y2=1

(2)证明:当AB的斜率为0或不存在时,直线MN的方程为y=0;
当AB的斜率存在且不为0时,设直线AB的方程为y=k(x-1)
设A,B的坐标分别为(x1,y1),(x2,y2),则点M的坐标为(
x1+x2
2
y1+y2
2

直线AB的方程y=k(x-1)与椭圆方程联立,消去y可得(2k2+1)-4k2x+2k2-2=0
∴x1+x2=
4k2
2k2+1

∴y1+y2=k(x1+x2-2)=
-2k
2k2+1

∴M(
2k2
2k2+1
-k
2k2+1

同理可得N(
2
k2+2
k
k2+2

∴直线MN的方程为:
y+
k
2k2+1
k
k2+2
+
k
2k2+1
=
x-
2k2
2k2+1
2
k2+2
-
2k2
2k2+1

化简可得(2-2k2)y=3k(x-
2
3

∴直线MN恒过定点(
2
3
,0).
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查直线恒过定点,确定直线MN的方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,求证:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源: 题型:

设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案