精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的单调区间

(2)当时,求函数上的最小值

【答案】(1) 当时,函数的单调増区间为 ; 当时,函数的单调递增区间为,单调递减区间为 ;(2) 当时,函数的最小值是;当时,函数的最小值是.

【解析】试题分析:(1首先对进行求导,然后分两种情况讨论分别令求得 的范围,可得函数增区间, 求得 的范围,可得函数的减区间;(2)结合1的结论三个区间进行讨论从而判断其在区间[上单调性,根据单调性确定最小值.

试题解析:(1)

①当时, ,即函数的单调増区间为

②当时,令,可得

时,

时, ,故函数的单调递增区间为,单调递减区间为.

(2)①当,即时,函数在区间[上是减函数,所以的最小值是.

②当,即时,函数在区间上是增函数,所以的最小值是.

③当,即时,函数上是增函数,在上是减函数.

所以当时,最小值是

时,最小值为.

综上可知,

时,函数的最小值是

时,函数的最小值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司计划购买2台机器该种机器使用三年后即被淘汰.机器有一易损零件在购进机器时可以额外购买这种零件作为备件每个200元.在机器使用期间如果备件不足再购买则每个500元.现需决策在购买机器时应同时购买几个易损零件为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率X表示2台机器三年内共需更换的易损零件数n表示购买2台机器的同时购买的易损零件数.

(1)X的分布列;

(2)若要求P(Xn)0.5确定n的最小值;

(3)以购买易损零件所需费用的期望值为决策依据n19n20之中选其一应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来我国电子商务行业迎来发展的新机遇,2017年双11全天交易额达到1682亿元,为规范和评估该行业的情况,相关管理部门制定出针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行评价,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.

(1)完成关于商品和服务评价的列联表,判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全为好评的次数为随机变量

①求对商品和服务全为好评的次数的分布列;

②求的数学期望和方差.

附:临界值表:

的观测值: (其中

关于商品和服务评价的列联表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 为自然对数的底数).

1)讨论函数的单调性,并写出相应的单调区间;

2)设,若函数对任意都成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是直角梯形, ,且 ,侧面底面是等边三角形.

1)求证:

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是等腰梯形, 平面

(1)求证: 平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·黄冈质检)设等比数列{an}的各项均为正数,公比为q,前n项和为Sn.若对任意的n∈N*,有S2n<3Sn,则q的取值范围是(  )

A. (0,1] B. (0,2)

C. [1,2) D. (0, )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 是线段的中点,且 平面

(Ⅰ)求证:平面平面

(Ⅱ)求证: 平面

(Ⅲ)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中, 平面,底面为梯形, , ,点 分别为 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在线段上是否存在点,使与平面所成角的正弦值是,若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案