【题目】已知函数.
(1)求函数的单调区间
(2)当时,求函数在上的最小值
【答案】(1) 当时,函数的单调増区间为 ; 当时,函数的单调递增区间为,单调递减区间为 ;(2) 当时,函数的最小值是;当时,函数的最小值是.
【解析】试题分析:(1)首先对进行求导,然后分与两种情况讨论,分别令求得 的范围,可得函数增区间, 求得 的范围,可得函数的减区间;(2)结合(1)的结论,对在三个区间进行讨论,从而判断其在区间[上单调性,根据单调性确定最小值.
试题解析:(1),
①当时, ,即函数的单调増区间为
②当时,令,可得 ,
当时, ;
当时, ,故函数的单调递增区间为,单调递减区间为.
(2)①当,即时,函数在区间[上是减函数,所以的最小值是.
②当,即时,函数在区间上是增函数,所以的最小值是.
③当,即时,函数在上是增函数,在上是减函数.
又,
所以当时,最小值是;
当时,最小值为.
综上可知,
当时,函数的最小值是;
当时,函数的最小值是.
科目:高中数学 来源: 题型:
【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(1)求X的分布列;
(2)若要求P(X≤n)≤0.5,确定n的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来我国电子商务行业迎来发展的新机遇,2017年双11全天交易额达到1682亿元,为规范和评估该行业的情况,相关管理部门制定出针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行评价,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)完成关于商品和服务评价的列联表,判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全为好评的次数为随机变量:
①求对商品和服务全为好评的次数的分布列;
②求的数学期望和方差.
附:临界值表:
的观测值: (其中)
关于商品和服务评价的列联表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·黄冈质检)设等比数列{an}的各项均为正数,公比为q,前n项和为Sn.若对任意的n∈N*,有S2n<3Sn,则q的取值范围是( )
A. (0,1] B. (0,2)
C. [1,2) D. (0, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中, 平面,底面为梯形, , , ,点, 分别为, 的中点.
(Ⅰ)求证: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段上是否存在点,使与平面所成角的正弦值是,若存在,求的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com