精英家教网 > 高中数学 > 题目详情
1.函数y=|sinx|的最小正周期T=π.

分析 根据y=|Asin(ωx+φ )|的周期等于$\frac{π}{|ω|}$,得出结论.

解答 解:根据y=|sinx|的周期等于y=sinx的周期的一半,
故y=|sinx|的周期为$\frac{1}{2}$×2π=π.
故答案为:π.

点评 本题主要考查三角函数的周期性及其求法,利用了y=Asin(ωx+φ )、y=Acos(ωx+φ )的周期等于$\frac{2π}{|ω|}$,y=|Asin(ωx+φ )|、y=|Acos(ωx+φ )|的周期等于$\frac{π}{|ω|}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设f(x)是R上的奇函数,且当x>0时,f(x)=x2-(a-1)x,a∈R.
(1)若f(1)=1,求f(x)在x∈(-∞,0)时的解析式;
(2)若a=0,不等式f(k•2x)+f(4x+1)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知二次函数f(x)=ax2+bx+c(a>0,b∈R,c∈R)
(1)若函数f(x)的最小值是f(-$\frac{1}{2}$)=-$\frac{1}{4}$,且f(0)=0,g(x)=$\left\{\begin{array}{l}{f(x),x≥0}\\{-f(x-1),x<0}\end{array}\right.$,判断并证明函数g(x)的奇偶性;
(2)在(1)条件下,求f(x)在区间[-1,m](m>-1)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.满足不等式:2kπ十π<α<2kπ+$\frac{3}{2}π$(k∈Z)的角α属于第三象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的一点,F1,F2为椭圆的焦点.
(1)若∠F1PF2=90°,求△PF1F2的面积;
(2)求|PF1|•|PF2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线的中心在原点,过右焦点F(2,0)作斜率为$\sqrt{\frac{3}{5}}$的直线,交双曲线于M,N两点,且|MN|=4,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2013}}{2013}$,g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2013}}{2013}$,设F(x)=f(x+3)•g(x-3),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知sinα,sinβ是方程8x2-6kx+2k+1=0的两根,且α.β终边互相垂直,则k=-$\frac{10}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数y=3cos(2x+φ)的图象关于点($\frac{4π}{3}$,0)中心对称,则|φ|的最小值为(  )
A.-$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案