精英家教网 > 高中数学 > 题目详情
(文)已知函数y=f(x)是偶函数,它在(-∞,0]上单调递增,则f(-3),f(
2
),f(π)的大小关系是
 
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:利用函数的单调性比较函数值的大小,需要在同一个单调区间上比较,利用偶函数的性质,f(-
2
)=f(
2
),f(-π)=f(π),可比较出大小.
解答: 解:由已知f(x)是R上的偶函数,所以有f(
2
)=f(-
2
),f(π)=f(-π),
又由在(-∞,0]上单调递增,且-π<-3<-
2

所以有f(-π)<f(-3)<f(-
2
),
所以f(π)<f(-3)<f(
2
),
故答案为:f(π)<f(-3)<f(
2
).
点评:本题考查函数的奇偶性与函数的单调性,以及它们的综合应用,函数值的大小比较,要利用单调性,统一在某个单调区间上比较大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)画出不等式组表示的平面区域
x+2y+4<0
x-y+1≤0

(2)解不等式x2-2x-3≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=k(x-
2
)与曲线x2-y2=1(x>0)相交于A、B两点,则直线l倾斜角的取值范围是(  )
A、{0,π)
B、(
π
4
π
2
)∪(
π
2
4
C、[0,
π
2
)∪(
π
2
,π)
D、(
π
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足约束条件
x≤4
y≤4
x+y≥4
,则目标函数z=x+2y的最小值是(  )
A、6B、5C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a,b,c,且a=3,b=4,B=
π
2
+A.
(1)求cosB的值;
(2)求sin2A+sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过定点M(4,0)作直线l,交抛物线y2=4x于A,B两点,F是抛物线的焦点,求△AFB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年9月,河南省第十二届运动会在焦作举行,我市男子篮球队获得冠军,赛前集训期间,甲、乙两球员进行定点投篮训练,每人每组投篮100次,各5组,如图所示茎叶图表示甲、乙两位球员的投篮命中次数,其中一个数字模糊,无法确认,在图中以X表示.
(1)若X=8,如果你是教练,你会首先选择甲、乙中的哪位球员上场?并说明理由;
(2)若乙的平均投篮命中次数高于甲的平均投篮命中次数,从甲、乙两人投篮中次数不低于90次的5组中任选2组,求所选2组投篮命中次数差的绝对值不超过2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为常数,函数f(x)=x2-4x+3,若f(x+a)为偶函数,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=f(x)的图象按向量
a
=(-
π
12
,2)平移后,得到函数g(x)=sin(2x+
π
6
)+2的图象,则函数f(x)的解析式为(  )
A、y=sin2x
B、y=sin(2x+
π
3
C、y=sin(2x+
π
12
D、y=sin(2x-
π
12

查看答案和解析>>

同步练习册答案