精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥S- ABCD中,SD⊥底面ABCDAB//DCAD ⊥ DC,AB=AD1DC=SD=2E为棱SB上的一点,且SE=2EB

(I)证明:DE⊥平面SBC

(II)证明:求二面角A- DE -C的大小

【答案】)证明略;(Ⅱ)

【解析】

试题()先根据题意建立适当的空间直角坐标系,写出相关点的坐标,利用空间向量证明线线垂直,再利用线面垂直的判定定理进行证明;(Ⅱ)求出两平面的法向量,求出法向量的夹角,再结合图形确定二面角的大小.

试题解析:分别以所在直线为x轴,轴,z建立空间直角坐标系(如图),

∵SE=2EB

∴DE平面SBC

(Ⅱ) (Ⅰ)知,DE⊥平面SBC

平面SBC

时,知

中点,则

,由此得FA⊥DE

向量的夹角等于二面角的平面角

二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是正项数列的前项和,.

1)证明:数列是等差数列;

2)设,数列的前项和

①求证:

②解关于的不等式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,过点轴的垂线交函数图象于点,以为切点作函数图象的切线交轴于点,再过轴的垂线交函数图象于点,以此类推得点,记的横坐标为

1)证明数列为等比数列并求出通项公式;

2)设直线与函数的图象相交于点,记(其中为坐标原点),求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥中,四边形是等腰梯形,平面.

1)求证:平面

2)已知二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在所有棱长都相等的三棱柱中,.

1)证明:

2)若二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.

1)求圆的普通方程和直线的直角坐标方程;

2)设直线轴,轴分别交于两点,点是圆上任一点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数.

1)讨论函数的极值;

2)若函数上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求不等式的解集;

2)若关于的不等式在实数范围内解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年10月中上旬是小麦的最佳种植时间,但小麦的发芽会受到土壤、气候等多方面因素的影响.某科技小组为了解昼夜温差的大小与小麦发芽的多少之间的关系,在不同的温差下统计了100颗小麦种子的发芽数,得到了如下数据:

温差

8

10

11

12

13

发芽数(颗)

79

81

85

86

90

(1)请根据统计的最后三组数据,求出关于的线性回归方程

(2)若由(1)中的线性回归方程得到的估计值与前两组数据的实际值误差均不超过两颗,则认为线性回归方程是可靠的,试判断(1)中得到的线性回归方程是否可靠;

(3)若100颗小麦种子的发芽率为颗,则记为的发芽率,当发芽率为时,平均每亩地的收益为元,某农场有土地10万亩,小麦种植期间昼夜温差大约为,根据(1)中得到的线性回归方程估计该农场种植小麦所获得的收益.

附:在线性回归方程中,.

查看答案和解析>>

同步练习册答案