12£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬|F1F2|=2c£¬µãAÔÚÍÖÔ²ÉÏ£¬ÇÒAF1´¹Ö±ÓÚxÖᣬ$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=c2£¬ÔòÍÖÔ²µÄÀëÐÄÂÊeµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{3}$B£®$\frac{\sqrt{3}-1}{2}$C£®$\frac{\sqrt{5}-1}{2}$D£®$\frac{\sqrt{2}}{2}$

·ÖÎö ÓÉÌâÒâ»­³öͼÐΣ¬µÃµ½AµÄ×ø±ê£¬½øÒ»²½ÇóµÃÏòÁ¿$\overrightarrow{A{F}_{1}}¡¢\overrightarrow{A{F}_{2}}$µÄ×ø±ê£¬ÓÉ$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=c2ÁÐʽÇóµÃÍÖÔ²µÄÀëÐÄÂÊe£®

½â´ð ½â£ºÈçͼ£¬
ÓÉ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¬µÃ${y}^{2}=\frac{{b}^{2}}{{a}^{2}}£¨{a}^{2}-{x}^{2}£©$£¬
È¡x=c£¬¿ÉµÃ£º${y}^{2}=\frac{{b}^{4}}{{a}^{2}}$£¬$y=¡À\frac{{b}^{2}}{a}$£¬
¡àA£¨-c£¬$\frac{{b}^{2}}{a}$£©£¬ÓÖF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
Ôò$\overrightarrow{A{F}_{1}}=£¨0£¬-\frac{{b}^{2}}{a}£©£¬\overrightarrow{A{F}_{2}}=£¨2c£¬-\frac{{b}^{2}}{a}£©$£¬
ÓÉ$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=c2£¬µÃ$£¨-\frac{{b}^{2}}{a}£©£¨-\frac{{b}^{2}}{a}£©={c}^{2}$£¬¼´$\frac{{b}^{4}}{{a}^{2}}={c}^{2}$£¬
¡à$\frac{£¨{a}^{2}-{c}^{2}£©^{2}}{{a}^{2}}={c}^{2}$£¬¼´e4-3e2+1=0£¬½âµÃ${e}^{2}=\frac{3-\sqrt{5}}{2}$£¬
¡à$e=\frac{\sqrt{5}-1}{2}$£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÀûÓÃÏòÁ¿ÊýÁ¿»ýÇóÍÖÔ²µÄбÂÊ£¬ÌåÏÖÁËÊýÐνáºÏµÄ½âÌâ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®½«ÏÂÁи÷¶ÔÊýʽ±íʾ³ÉÖ¸Êýʽ£º
£¨1£©log2$\frac{1}{4}$=-2£»
£¨2£©log${\;}_{\sqrt{3}}$27=6£»
£¨3£©lg5.4=x£»
£¨4£©lnx=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÈôÇòµÄ´óÔ²µÄÃæ»ýÀ©´óΪԭÀ´µÄ2±¶£¬ÔòÇòµÄ±íÃæ»ýÀ©´óΪԭÀ´µÄ£¨¡¡¡¡£©
A£®8±¶B£®4±¶C£®2$\sqrt{2}$±¶D£®2±¶

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÈôÖ±Ïßy=-x+kÓëÇúÏßx=-$\sqrt{1-{y}^{2}}$Ç¡ÓÐÒ»¸ö¹«¹²µã£¬ÔòkµÄÈ¡Öµ·¶Î§k=-$\sqrt{2}$»òk¡Ê£¨-1£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®a£¬b£¬cÊÇ»¥²»ÏàµÈµÄÕýÊý£¬ÇÒabc=1£¬ÇóÖ¤£º£¨1+a+b£©£¨1+b+c£©£¨1+c+a£©£¾27£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈôµãPÔÚÒÔFΪ½¹µãµÄÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏ£¬ÇÒPF¡ÍFO£¬|PF|=2£¬OΪԭµã£®ÈôÖ±Ïßx-2y=1Óë´ËÅ×ÎïÏßÏཻÓÚÁ½µãA£¬B£¬µãNÊÇÅ×ÎïÏß»¡$\widehat{AOB}$ÉϵĶ¯µã£¬Çó¡÷ABNÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®·½³Ì×é{$\left\{\begin{array}{l}{x-3y=4\\;}\\{5x+y=4}\end{array}\right.$µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®{1£¬-1}B£®{x£¬y|x=1£¬y=-1}C£®{x=1£¬y=-1}D£®{£¨1£¬-1£©}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬Ò»´¬×ÔÎ÷Ïò¶«ÔÈËÙÐÐÊ»£¬ÉÏÎç9ʱµ½´ï¾àÀëµÆËþPΪ68º£ÀïµÄM´¦£¬ÔÚM´¦¿´µÆËþPÔÚ´¬µÄ±±Æ«¶«75¡ã·½Ïò£¬ÉÏÎç11ʱº½Ðе½N´¦£¬ÔÚN´¦¿´µÆËþPÔÚ´¬µÄ±±Æ«Î÷45¡ã·½Ïò£¬ÔòÕâËÒ´¬µÄº½ÐÐËÙ¶ÈΪ£¨¡¡¡¡£©
A£®17$\sqrt{6}$º£Àï/СʱB£®68$\sqrt{6}$º£Àï/СʱC£®17$\sqrt{2}$º£Àï/СʱD£®68$\sqrt{2}$º£Àï/Сʱ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚÈýÀâ׶P-ABCÖУ¬PA¡¢PB¡¢PCÁ½Á½´¹Ö±£¬ÇÒPA=3£¬PB=1£¬PC=9£®ÉèMÊǵ×ÃæABCÄÚÒ»µã£¬¶¨Òåf£¨M£©=£¨m¡¢n¡¢p£©£¬ÆäÖÐm¡¢n¡¢p·Ö±ðÊÇÈýÀâ׶M-PAB¡¢ÈýÀâ׶M-PBC¡¢ÈýÀâ׶M-PCAµÄÌå»ý£¬Èôf£¨M£©=£¨$\frac{1}{2}$£¬x£¬y£©£¬ÇÒ$\frac{{x}^{2}}{2}$+y2¡Ýaºã³ÉÁ¢£¬ÔòÕýʵÊýaµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{4}{3}$B£®$\frac{16}{3}$C£®$\frac{8}{3}$D£®$\frac{7}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸