分析 根据函数f(x)=x3+ax2+b(a,b∈R),当x=$\frac{4}{3}$时,f(x)取极小值0,得到f′($\frac{4}{3}$)=$\frac{16}{3}$+$\frac{8}{3}$a=0,f($\frac{4}{3}$)=$\frac{64}{27}$+$\frac{16}{9}$a+b,即可求出b.
解答 解:∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,
∵函数f(x)=x3+ax2+b(a,b∈R),当x=$\frac{4}{3}$时,f(x)取极小值0,
∴f′($\frac{4}{3}$)=$\frac{16}{3}$+$\frac{8}{3}$a=0,f($\frac{4}{3}$)=$\frac{64}{27}$+$\frac{16}{9}$a+b,
∴a=-2,b=$\frac{32}{27}$.
故答案为:$\frac{32}{27}$.
点评 本题考查函数在某一点取得极值的条件,是一个基础题,本题解题的关键是函数在这一点取得极值,则函数在这一点点导函数等于0,注意这个条件的应用.
科目:高中数学 来源: 题型:选择题
A. | (2,$\frac{7}{6}π}$) | B. | (2,-$\frac{7}{6}π}$) | C. | (-2,-$\frac{11π}{6}}$) | D. | (-2,$\frac{13}{6}π}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 150 | B. | 200 | C. | 250 | D. | 300 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{4}$ | B. | $\frac{7}{5}$ | C. | $\frac{15}{4}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com