精英家教网 > 高中数学 > 题目详情

【题目】已知若,则称的原函数,此时所有的原函数为,其中为常数,如:,则为常数).现已知函数的导函数为且对任意的实数都有是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是( )

A.B.C.D.

【答案】C

【解析】

把已知等式变形为,即,由此根据所给材料可求出,然后再由导数研究的单调性,极值,对应的函数值,作出函数图象,得出结论.

由等式,可得

,即为常数),

,则,∴

因此,

,得,列表如下:

-2

1

-

0

+

0

-

极小值

极大值

函数的极小值为,极大值为,且

作出图象如图所示,由图象可知,当时,.

另一方面,则

由于函数在直线下方的图象中只有两个横坐标为整数的点,

由图象可知,这两个点的横坐标分别为-2、-1,则有,解得

因此,实数的取值范围是

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在平面直角坐标系中,曲线的参数方程为为参数,),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)设是曲线上的一个动眯,当时,求点到直线的距离的最小值;

(2)若曲线上所有的点都在直线的右下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知D是边AC上的一点,将沿BD折叠,得到三棱锥,若该三棱锥的顶点A在底面BCD的射影M在线段BC上,设,则x的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某隧道的剖面图是由半圆及矩形组成,交通部门拟在隧道顶部安装通风设备(视作点),为了固定该设备,计划除从隧道最高点处使用钢管垂直向下吊装以外,再在两侧自两点分别使用钢管支撑.已知道路宽,设备要求安装在半圆内部,所使用的钢管总长度为.

(1)①设,将表示为关于的函数;

②设,将表示为关于的函数;

(2)请选用(1)中的一个函数关系式,说明如何设计,所用的钢管材料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左、右焦点分别为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.

(1)若点的坐标为,求椭圆的方程及的值;

(2)若,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求的单调区间;

(2)当时,求证:对于恒成立;

(3)若存在,使得当时,恒有成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是矩形,,平面平面

1)若点是的中点,求证:平面

2)求证:平面平面

3)若,求直线与平面成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若在两个成语中,一个成语的末字恰是另一成语的首字,则称这两个成语有顶真关系,现从分别贴有成语人定胜天争先恐后一马当先天马行空先发制人5张大小形状完全相同卡片中,任意抽取2张,则这2张卡片上的成语有顶真关系的概率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班随机抽查了名学生的数学成绩,分数制成如图的茎叶图,其中组学生每天学习数学时间不足个小时,组学生每天学习数学时间达到一个小时,学校规定分及分以上记为优秀,分及分以上记为达标,分以下记为未达标.

1)根据茎叶图完成下面的列联表:

达标

未达标

总计

总计

2)判断是否有的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.

参考公式与临界值表:,其中.

查看答案和解析>>

同步练习册答案