精英家教网 > 高中数学 > 题目详情

【题目】2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18﹣36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:

微信群数量

频数

频率

0至5个

0

0

6至10个

30

0.3

11至15个

30

0.3

16至20个

a

c

20个以上

5

b

合计

100

1

(Ⅰ)求a,b,c的值;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;
(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.

【答案】解:(Ⅰ)由已知得:0+30+30+a+5=100, 解得a=35,

(Ⅱ)记“2人中恰有1人微信群个数超过15个”为事件A,

所以,2人中恰有1人微信群个数超过15个的概率为
(Ⅲ)依题意可知,微信群个数超过15个的概率为
X的所有可能取值0,1,2,3.




其分布列如下:

X

0

1

2

3

P

所以,
【解析】(Ⅰ)由频率分布列的性质及 ,能求出a,b,c的值.(Ⅱ)记“2人中恰有1人微信群个数超过15个”为事件A,利用等可能事件概率计算公式能求出2人中恰有1人微信群个数超过15个的概率.(Ⅲ)依题意可知,微信群个数超过15个的概率为 .X的所有可能取值0,1,2,3,由此能求出X的分布列和数学期望EX.
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在学校组织的“环保知识”竞赛活动中,甲、乙两班6名参赛选手的成绩的茎叶图受到不同程度的污损,如图:
(Ⅰ)求乙班总分超过甲班的概率;
(Ⅱ)若甲班污损的学生成绩是90分,乙班污损的学生成绩为97分,现从甲乙两班所有选手成绩中各随机抽取2个,记抽取到成绩高于90分的选手的总人数为ξ,求ξ的分布列及数学成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=2,nan+1=2(n+1)an
(1)记bn= ,求数列{bn}的通项bn
(2)求通项an及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,双曲线的中心在坐标原点O,M、N分别为双曲线虚轴的上、下端点,A是双曲线的右顶点,F是双曲线的右焦点,直线AM与FN相交于点P,若∠APF是锐角,则此双曲线的离心率的取值范围是(
A.( ,+∞)
B.(1+ ,+∞)
C.(0,
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若F1 , F2是椭圆C: + =1(0<m<9)的两个焦点,椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点M. (Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0, )的直线l与椭圆C交于两点A、B,线段AB的中垂线l1交x轴于点N,R是线段AN的中点,求直线l1与直线BR的交点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间[0,1]上单调递增的是(
A.y=cosx
B.y=﹣x2
C.
D.y=|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 上的动点P与其顶点 不重合. (Ⅰ)求证:直线PA与PB的斜率乘积为定值;
(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标xOy中,直线l的参数方程为{ (t为参数)在以O为极点.x轴正半轴为极轴的极坐标系中.曲线C的极坐标方程为ρ=4sinθ﹣2cosθ. (I)求直线l的普通方程与曲线C的直角坐标方程:
(Ⅱ)若直线l与y轴的交点为P,直线l与曲线C的交点为A,B,求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,面积S= abcosC
(1)求角C的大小;
(2)设函数f(x)= sin cos +cos2 ,求f(B)的最大值,及取得最大值时角B的值.

查看答案和解析>>

同步练习册答案