【题目】2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18﹣36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量 | 频数 | 频率 |
0至5个 | 0 | 0 |
6至10个 | 30 | 0.3 |
11至15个 | 30 | 0.3 |
16至20个 | a | c |
20个以上 | 5 | b |
合计 | 100 | 1 |
(Ⅰ)求a,b,c的值;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;
(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.
【答案】解:(Ⅰ)由已知得:0+30+30+a+5=100, 解得a=35,
∴ , .
(Ⅱ)记“2人中恰有1人微信群个数超过15个”为事件A,
则 .
所以,2人中恰有1人微信群个数超过15个的概率为 .
(Ⅲ)依题意可知,微信群个数超过15个的概率为 .
X的所有可能取值0,1,2,3.
则 ,
,
,
.
其分布列如下:
X | 0 | 1 | 2 | 3 |
P |
所以,
【解析】(Ⅰ)由频率分布列的性质及 ,能求出a,b,c的值.(Ⅱ)记“2人中恰有1人微信群个数超过15个”为事件A,利用等可能事件概率计算公式能求出2人中恰有1人微信群个数超过15个的概率.(Ⅲ)依题意可知,微信群个数超过15个的概率为 .X的所有可能取值0,1,2,3,由此能求出X的分布列和数学期望EX.
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】在学校组织的“环保知识”竞赛活动中,甲、乙两班6名参赛选手的成绩的茎叶图受到不同程度的污损,如图:
(Ⅰ)求乙班总分超过甲班的概率;
(Ⅱ)若甲班污损的学生成绩是90分,乙班污损的学生成绩为97分,现从甲乙两班所有选手成绩中各随机抽取2个,记抽取到成绩高于90分的选手的总人数为ξ,求ξ的分布列及数学成绩.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且a1=2,nan+1=2(n+1)an
(1)记bn= ,求数列{bn}的通项bn;
(2)求通项an及前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,双曲线的中心在坐标原点O,M、N分别为双曲线虚轴的上、下端点,A是双曲线的右顶点,F是双曲线的右焦点,直线AM与FN相交于点P,若∠APF是锐角,则此双曲线的离心率的取值范围是( )
A.( ,+∞)
B.(1+ ,+∞)
C.(0, )
D.( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若F1 , F2是椭圆C: + =1(0<m<9)的两个焦点,椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点M. (Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0, )的直线l与椭圆C交于两点A、B,线段AB的中垂线l1交x轴于点N,R是线段AN的中点,求直线l1与直线BR的交点E的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 上的动点P与其顶点 , 不重合. (Ⅰ)求证:直线PA与PB的斜率乘积为定值;
(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标xOy中,直线l的参数方程为{ (t为参数)在以O为极点.x轴正半轴为极轴的极坐标系中.曲线C的极坐标方程为ρ=4sinθ﹣2cosθ. (I)求直线l的普通方程与曲线C的直角坐标方程:
(Ⅱ)若直线l与y轴的交点为P,直线l与曲线C的交点为A,B,求|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,面积S= abcosC
(1)求角C的大小;
(2)设函数f(x)= sin cos +cos2 ,求f(B)的最大值,及取得最大值时角B的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com