精英家教网 > 高中数学 > 题目详情

【题目】某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图,以频率值作为概率估值。

(1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率)

评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;

(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望

【答案】(1) 不满足至少两个不等式,该生产线需检修;(2)见解析.

【解析】分析:(1)根据频率分布直方图得出X落在上的概率,从而得出结论;

(2)根据题意,的可能值为:0,1,2,分别求出对应的概率即可.

详解:(1)由题意知,由频率分布直方图得:

不满足至少两个不等式,该生产线需检修。

(2)由(1)知:

任取一件是次品的概率为:

任取两件产品得到次品数的可能值为:0,1,2

的分布列为:

0

1

2

(或

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知正方体的棱长为2EFG分别为的中点,给出下列命题:

①异面直线EFAG所成的角的余弦值为

②过点EFG作正方体的截面,所得的截面的面积是

平面

④三棱锥的体积为1

其中正确的命题是_____________(填写所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.

1)求曲线C的方程;

2)设不经过点的直线l与曲线C相交于AB两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在正方体的棱上(不含端点),给出下列五个命题:

①过点有且只有一条直线与直线,都是异面直线;

②过点有且只有一条直线与直线,都相交;

③过点有且只有一条直线与直线,都垂直;

④过点有无数个平面与直线,都相交;

⑤过点有无数个平面与直线,都平行;

其中真命题是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有个电子元件,将每组的个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.

1)当时,估算一组待检测电子元件中有次品的概率;

2)设一组电子元件的检测次数为,求的数学期望;

3)估算当为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用进行估算).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个集合A,B,满足BA.若对任意的xA,存在ai,ajB(i≠j),

使得x=λ1ai2aj(λ1,λ2{﹣1,0,1}),则称BA的一个基集.若A={1,2,3,4,5,6,7,8,9,10},则其基集B元素个数的最小值是__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,其右焦点为,且点在椭圆C上.

求椭圆C的方程;

设椭圆的左、右顶点分别为ABM是椭圆上异于AB的任意一点,直线MF交椭圆C于另一点N,直线MB交直线Q点,求证:ANQ三点在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三学生为了迎接高考,要经常进行模拟考试,锻炼应试能力,某学生从升入高三到高考要参加次模拟考试,下面是高三第一学期某学生参加次模拟考试的数学成绩表:

模拟考试第

考试成绩

1)已知该考生的模拟考试成绩与模拟考试的次数满足回归直线方程,若高考看作第次模拟考试,试估计该考生的高考数学成绩;

2)把次模拟考试的成绩单放在五个相同的信封中,从中随机抽取个信封研究成绩,求抽取的个信封中恰有个成绩不等于平均值的概率.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数有四个零点,则的取值范围是( )

A.B.C.D.

查看答案和解析>>

同步练习册答案