已知
(1)若存在使得
≥0成立,求
的范围
(2)求证:当>1时,在(1)的条件下,
成立
(1);(2)证明过程详见解析.
解析试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、最值、不等式等基础知识,考查函数思想,考查综合分析和解决问题的能力.第一问,将已知条件转化为,所以重点是求函数
的最小值,对所设
求导,判断函数的单调性,判断最小值所在位置,所以
;第二问,将所求证的表达式进行转化,变成
,设函数
,则需证明
,由第一问可知
且
,所以利用不等式的性质可知
,所以判断函数
在
为增函数,所以最小值为
,即
.
试题解析:(
)
(1)即存在使得
1分
∴ 令
∴ 3分
令,解得
∵时,
∴
为减
时,
∴
为增
∴ 5分
∴
∴ 6分
(2)即(
)
令,则
7分
由(1)可知
则 10分
∴在
上单调递增
∴成立
∴>0成立 12分
考点:1 利用导数判断函数的单调性;2 利用导数求函数的最值
科目:高中数学 来源: 题型:解答题
已知函数 (
为实常数) .
(1)当时,求函数
在
上的最大值及相应的
值;
(2)当时,讨论方程
根的个数.
(3)若,且对任意的
,都有
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(
为自然对数的底数),
(
为常数),
是实数集
上的奇函数.
(1)求证:;
(2)讨论关于的方程:
的根的个数;
(3)设,证明:
(
为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,
(
)
(1)若函数存在极值点,求实数b的取值范围;
(2)求函数的单调区间;
(3)当且
时,令
,
(
),
(
)为曲线y=
上的两动点,O为坐标原点,能否使得
是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com