分析 (1)利用复数的运算法则、模的计算公式、复数相等即可得出;
(2)展开利用导数的运算法则即可得出;
(3)利用一元二次不等式的解法、交集的运算性质即可得出.
解答 解:(1)设z=a+bi,(a,b∈R),而|z|=1+3i-z,即$\sqrt{{a^2}+{b^2}}-1-3i+a+bi=0$,
则$\left\{\begin{array}{l}\sqrt{{a^2}+{b^2}}+a-1=0\\ b-3=0\end{array}\right.⇒\left\{\begin{array}{l}a=-4\\ b=3\end{array}\right.,z=-4+3i$,
$\frac{{{{(1+i)}^2}{{(3+4i)}^2}}}{2z}=\frac{2i(-7+24i)}{2(-4+3i)}=\frac{24+7i}{4-i}=3+4i$.
(2)y=(x2+3x+2)(x+3)=x3+6x2+11x+6,
∴y′=3x2+12x+11.
(3)∵$\left\{\begin{array}{l}{{x}^{2}+2x-3≤0}\\{{x}^{2}+2x>0}\end{array}\right.$,
∴-3≤x<-2或0<x≤1.
∴不等式的解集{x|-3≤x<-2或0<x≤1}.
点评 本题考查了复数的运算法则、模的计算公式、复数相等、导数的运算法则、一元二次不等式的解法、交集的运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0” | |
B. | “x=1”是“x2-3x+2=0”的充分不必要条件 | |
C. | 对于命题p:?x∈R可使x2+x+1<0,则?p为:?x∈R,均有x2+x+1≥0 | |
D. | 若命题p且q为假命题,则p、q均为假命题 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com