精英家教网 > 高中数学 > 题目详情

【题目】已知圆心在坐标原点的圆O经过圆与圆的交点,AB是圆Oy轴的交点,P为直线y=4上的动点,PAPB与圆O的另一个交点分别为MN.

(1)求圆O的方程;

(2)求证:直线MN过定点.

【答案】(1)(2)证明见解析

【解析】

(1)联立两圆的方程,求解方程组即可得两圆的交点坐标为(2,0)和(0,2),

又所求圆的圆心为坐标原点,则可得圆的方程为

(2)联立直线与圆的方程,可得交点坐标分别为

再由点斜式求直线方程为,即可得证.

(1)解:由解得:

即两圆的交点坐标为(2,0)和(0,2),

又因为圆O的圆心为坐标原点,

所以圆O的方程为.

(2)证:不妨设A(0,2)、B(0,-2)、P(t,4),

则直线PA的直线方程为,直线PB的直线方程为

,同理可得

直线MN的斜率为

直线MN的的方程为:

化简得:

所以直线MN过定点(0,1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道,且两边是两个关于走道对称的三角形().现考虑方便和绿地最大化原则,要求点与点均不重合,落在边上且不与端点重合,设.

(1)若,求此时公共绿地的面积;

(2)为方便小区居民的行走,设计时要求的长度最短,求此时绿地公共走道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的有(  )

①函数y的定义域为{x|x1};

②函数yx2x+1(0,+)上是增函数;

③函数f(x)=x3+1(xR),若f(a)=2,则f(-a)=-2;

④已知f(x)R上的增函数,若ab>0,则有f(a)+f(b)>f(-a)+f(-b).

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程有5个不同的实数解,则实数的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户

求抽取的6名用户中男女用户各多少人;

从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率.

(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

.635

非移动支付活跃用户

移动支付活跃用户

合计

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市理论预测2010年到2014年人口总数与年份的关系如下表所示

年份2010+x(年)

0

1

2

3

4

人口数y(十万)

5

7

8

11

19

(1)请根据上表提供的数据,求出y关于x的线性回归方程;

(2) 据此估计2015年该城市人口总数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xetx﹣ex+1,其中t∈R,e是自然对数的底数.
(1)若方程f(x)=1无实数根,求实数t的取值范围;
(2)若函数f(x)在(0,+∞)内为减函数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面推理过程中使用了类比推理方法,其中推理正确的是( )

A. 平面内的三条直线,若,则.类比推出:空间中的三条直线,若,则

B. 平面内的三条直线,若,则.类比推出:空间中的三条向量,若,则

C. 在平面内,若两个正三角形的边长的比为,则它们的面积比为.类比推出:在空间中,若两个正四面体的棱长的比为,则它们的体积比为

D. ,则复数.类比推理:,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,若已知其在内只取到一个最大值和一个最小值,且当时函数取得最大值为;当,函数取得最小值为

(1)求出此函数的解析式;

(2)是否存在实数,满足不等式?若存在,求出的范围(或值),若不存在,请说明理由;

(3)若将函数的图像保持横坐标不变纵坐标变为原来的得到函数,再将函数的图像向左平移个单位得到函数,已知函数的最大值为,求满足条件的的最小值.

查看答案和解析>>

同步练习册答案