精英家教网 > 高中数学 > 题目详情

设函数y=1﹣2sin(﹣x)cos(﹣x),x∈R,则该函数是(  )

 

A.

最小正周期为的奇函数

B.

最小正周期为的偶函数

 

C.

最小正周期为π的奇函数

D.

最小正周期为π的偶函数

考点:

三角函数的周期性及其求法;正弦函数的奇偶性.

专题:

三角函数的图像与性质.

分析:

函数解析式利用二倍角的正弦函数公式及诱导公式化简,根据余弦函数为偶函数判断得到该函数为偶函数,找出ω的值,求出最小正周期即可.

解答:

解:y=1﹣2sin(﹣x)cos(﹣x)=1﹣sin(﹣2x)=1﹣cos2x,

∵ω=2,cos2x为偶函数,

则该函数是最小正周期为π的偶函数.

故选D

点评:

此题考查了三角函数的周期性及其求法,以及余弦函数的奇偶性,将函数解析式进行适当的变形是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设k>1,f(x)=k(x-1)(x∈R).在平面直角坐标系xOy中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f-1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于(  )
A、3
B、
3
2
C、
4
3
D、
6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(14分)
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省济宁市汶上一中高一(上)10月月考数学试卷(解析版) 题型:解答题

某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(14分)
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

同步练习册答案