精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:x∈[-1,2],函数f(x)=x2-x的值大于0,若p∨q是真命题,则命题q可以是(  )

A. x0∈(-1,1),cos x0

B. “-3<m<0”是“函数f(x)=x+log2x+m在区间上有零点”的必要不充分条件

C. x=是曲线f(x)=sin 2x+cos 2x的一条对称轴

D. 若x∈(0,2),则在曲线f(x)=ex(x-2)上任意一点处的切线的斜率不小于

【答案】C

【解析】

由题意易知p是假命题,故只需q是真命题,逐一判断选项即可解决.

对于命题p:函数f(x)=x2-x= ,则函数f(x) 上单调递减,在 上单调递增.∴当x=时,f(x)取得最小值,,因此命题p是假命题.若pq是真命题,则命题q必须是真命题.A中,x(-1,1),cos x(cos 1,1],而cos 1>,因此A是假命题;B中,函数f(x)=x+log2x+m在区间上单调递增,若函数f(x)在此区间上有零点,则,解得 ,因此“-3<m<0”是“函数f(x)=x+log2x+m在区间上有零点”的充分不必要条件,因此B是假命题;C中,f(x)=sin 2x+cos 2x=,当x= 时,,因此x=是曲线y=f(x)的一条对称轴,C是真命题;D中,f(x)=ex(x-2),f′(x)=exex(x-2)=ex(x-1),当x(0,2)时,f′(x)>f′(0)=-1,因此D是假命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆 =1(a>b>0)的离心率为 ,长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q.

(1)若直线l的斜率为 ,求 的值;
(2)若 ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,A,B两点为喷泉,圆心O为AB的中点,其中OA=OB=a米,半径OC=10米,市民可位于水池边缘任意一点C处观赏.

(1)若当∠OBC= 时,sin∠BCO= ,求此时a的值;
(2)设y=CA2+CB2 , 且CA2+CB2≤232.
(i)试将y表示为a的函数,并求出a的取值范围;
(ii)若同时要求市民在水池边缘任意一点C处观赏喷泉时,观赏角度∠ACB的最大值不小于 ,试求A,B两处喷泉间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是 (t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是直线l:y=m(m<0)上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A.

(1)求抛物线E的方程;

(2)求证:点S,T在以FM为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥P﹣ABCD中,四边形ABCD为正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分别为PD,CD,AD的中点, =3

(1)证明:PB∥平面FMN;
(2)若PA=AB,求二面角E﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 =1(a>b>0)的左、右顶点分别为A,B,焦距为2 ,直线x=﹣a与y=b交于点D,且|BD|=3 ,过点B作直线l交直线x=﹣a于点M,交椭圆于另一点P.

(1)求椭圆的方程;
(2)证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一次考试成绩的样本频率分布直方图(样本容量n=200),若成绩不低于60分为及格,则样本中的及格人数是( )

A. 6 B. 36 C. 60 D. 120

查看答案和解析>>

同步练习册答案