精英家教网 > 高中数学 > 题目详情

【题目】在公比为2的等比数列{an}中,a2与a3的等差中项是9
(1)求a1的值;
(2)若函数y=|a1|sin( x+φ),|φ|<π,的一部分图象如图所示,M(﹣1,|a1|),N(3,﹣|a1|)为图象上的两点,设∠MPN=β,其中P与坐标原点O重合,0<β<π,求tan(φ﹣β)的值.

【答案】
(1)解:由题可知 ,又a5=8a2

∴a1=


(2)解:∵点M(﹣1,|a1|),在函数y=|a1|sin( x+φ),|φ|<π的图象上,

∴sin(﹣ +φ)=1,

又∵|φ|<π,∴φ=

如图,连接MN,在△MPN中,由余弦定理得

又∵0<β<π,∴

∴tan(φ﹣β)=﹣tan =﹣tan( )=﹣2+


【解析】(1)根据等比数列和等差数列的性质进行求解即可.(2)根据三角函数的图象确实A,ω和φ的值即可.
【考点精析】利用等比数列的通项公式(及其变式)对题目进行判断即可得到答案,需要熟知通项公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)满足f(﹣x)+f(x)=0且f(x+1)=f(x﹣1),若x∈(0,1)时,f(x)=log2 ,则y=f(x)在(1,2)内是(
A.单调增函数,且f(x)<0
B.单调减函数,且f(x)<0
C.单调增函数,且f(x)>0
D.单调增函数,且f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,CC1底面ABCACCB,点MN分别是B1C1BC的中点.

(1)求证:MB平面AC1N

(2)求证:AC⊥MB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】绿色出行越来越受到社会的关注,越来越多的消费者对新能源汽车感兴趣但是消费者比较关心的问题是汽车的续驶里程某研究小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程单次充电后能行驶的最大里程,被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组: ,绘制成如图所示的频率分布直方图.

求直方图中m的值;

求本次调查中续驶里程在的车辆数;

若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车续驶里程在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x |,其在区间[0,1]上单调递增,则a的取值范围为(
A.[0,1]
B.[﹣1,0]
C.[﹣1,1]
D.[﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分)已知圆有以下性质:

过圆上一点的圆的切线方程是.

为圆外一点,过作圆的两条切线,切点分别为则直线的方程为.

若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则垂直,即,且平分线段.

(1)类比上述有关结论,猜想过椭圆上一点的切线方程(不要求证明);

(2)过椭圆外一点作两直线,与椭圆相切于两点,求过两点的直线方程;

(3)若过椭圆外一点不在坐标轴上)作两直线,与椭圆相切于两点,求证:为定值,且平分线段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某上市股票在30天内每股的交易价格(元)与时间(天)组成有序数对,点落在图中的两条线段上;该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示,且满足一次函数关系,

4

10

16

22

(万股)

36

30

24

18

那么在这30天中第几天日交易额最大( )

A. 10 B. 15 C. 20 D. 25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点.

(1)求以线段为邻边的平行四边形的另一顶点的坐标;

(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P. (Ⅰ)求证:AD∥EC;
(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.

查看答案和解析>>

同步练习册答案