精英家教网 > 高中数学 > 题目详情
(1-
1
x
)(3x+2)5的展开式中的常数项为(  )
A、210B、-240
C、32D、-208
考点:二项式系数的性质
专题:应用题,二项式定理
分析:先求出二项式展开式的通项公式,再令x的幂指数等于0,1,求得r的值,可得系数,即可求得展开式中的常数项的值.
解答: 解:(3x+2)5的展开式的通项公式为Tr+1=
C
r
5
•(3x)5-r•2r
令5-r=0,求得r=5,系数为32;令5-r=1,求得r=4,系数为240,
故(1-
1
x
)(3x+2)5的展开式中的常数项为32-240=-208,
故选:D.
点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn是等差数列{an}的前n项和,若a1=-23,Sn≥0的最小正整数解为n=11,则公差d的取值范围是(  )
A、(
23
10
23
9
]
B、[
23
10
23
9
C、(
23
5
46
9
]
D、[
23
5
46
9

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,程序框图输出的所有实数对(x,y)所对应的点都在函数(  )
A、y=x+1的图象上
B、y=2x的图象上
C、y=2x的图象上
D、y=2x-1的图象上

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域D1={(x,y)|
x≥-2
y≤2
x-y≤0
},D2={(x,y)|kx-y+2<0,k>0},在区域D1内随机选取一点M,若点M恰好在区域D2内的概率为
1
4
,则k的值为(  )
A、0
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程|x+
1
x
|-|x-
1
x
|-kx-1=0有五个互不相等的实数根,则k的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有一个边长为2的正六边形墙洞,一蜘蛛编制了一个近似为内切圆的蛛网,蚊子只有蛛网边缘与洞壁间的间隙处才能飞过,则飞过此洞的蚊子被捕食的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

我市某公司为激励工人进行技术革新,既保质量又提高产值,对小组生产产值超产部分进行奖励,设年底时超产产值为x(x>0)万元,当x不超过35万元时,奖金为log6(x+1)万元,当x超过35万元时,奖金为5%•(x+5)万元
(1)若某小组年底超产产值为75万元,则其超产奖金为多少?
(2)写出奖金y(单位:万元)关于超产产值x的函数关系式;
(3)某小组想争取年超产奖金y∈[1,6](单位:万元),则超产产值x应在什么范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为(-∞,1)∪(1,+∞)的函数y=f(x)满足f(x)=f(2-x),(x-1)f′(x)>0.若x1+x2>2且x1<x2,则(  )
A、f(x1)<f(x2
B、f(x1)>f(x2
C、f(x1)=f(x2
D、f(x1),f(x2)大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={α|α=
6
,k∈Z},B={β|β=
3
+
π
6
,n∈Z}的关系是(  )
A、A?BB、A?B
C、A⊆BD、A=B

查看答案和解析>>

同步练习册答案