精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)讨论函数的单调性;

(2)是否存在,使得对任意恒成立?若存在,求出的最小值;若不存在,请说明理由.

【答案】(1)答案见解析;(2)答案见解析.

【解析】分析:第一问先将函数的解析式确定,接着写出函数的定义域,之后对函数求导,对a进行讨论,确定导数的符号,从而求得函数的单调区间,第二问假设存在,之后将其转化为最值问题借用导数研究函数的图像的走向,从而确定函数的最值,最后求得结果.

详解:(1)由已知得的定义域为

①当时,,所以

所以函数上单调递减;

②当时,令,得

(i)当),即时,所以),

所以函数上单调递增;

(ii)当,即时,在上函数,在上函数,所以函数上单调递增,在上单调递减,在上单调递增;

(iii)当,即时,在上函数,在上函数

所以函数上单调递增,在上单调递减,在上单调递增.

(2)若对任意恒成立,则

,只需

,则

所以上单调递减.

所以存在唯一,使得,即

时,的变化情况如下:

极大值

所以

又因为,所以

所以

因为,所以,所以

,所以

因为,即,且,故的最小整数值为3,

所以存在最小整数,使得对任意恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点到两点的距离之和等于,设点的轨迹为

(1)求曲线的方程;

(2)过点作直线与曲线交于点,以线段为直径的圆能否过坐标原点,若能,求出直线的方程,若不能请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在正方形中,的中点,点在线段上,且.若将, 分别沿折起,使两点重合于点,如图2.

(1)求证: 平面;

(2)求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:

(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;

(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?

优质品

非优质品

合计

合计

(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;

(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是奇函数.

1)求

2)对,不等式恒成立,求实数的取值范围;

3)令,若关于的方程有唯一实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如图:

根据上图,对这两名运动员地成绩进行比较,下列四个结论中,不正确的是

A. 甲运动员得分的极差大于乙运动员得分的极差

B. 甲运动员得分的中位数大于乙运动员得分的中位数

C. 甲运动员的得分平均值大于乙运动员的得分平均值

D. 甲运动员的成绩比乙运动员的成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研究变量得到一组样本数据,进行回归分析有以下结论

残差平方和越小的模型,拟合的效果越好

用相关指数来刻画回归效果越小说明拟合效果越好

在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位

若变量之间的相关系数为则变量之间的负相关很强,以上正确说法的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为函数的导函数.

(1)设函数的图象与轴交点为,曲线点处的切线方程是,求的值;

(2)若函数,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某中学甲、乙两班各随机抽取 名同学,测量他们的身高(单位: ),所得数据用茎叶图表示如下,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是( )

A. 甲班同学身高的方差较大 B. 甲班同学身高的平均值较大

C. 甲班同学身高的中位数较大 D. 甲班同学身高在 以上的人数较多

查看答案和解析>>

同步练习册答案