【题目】己知动点M与到点N(3,0)的距离比动点M到直线x=-2的距离大1,记动圆M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若直线l与曲线C相交于A,B:两点,且(O为坐标原点),证明直线l经过定点H,并求出H点的坐标.
科目:高中数学 来源: 题型:
【题目】湖南省第九届少数民族传统体育运动会于2018年10月16日至20日在湘西龙山举行.运动会期间,湖南省14个市州和17个民族县市区组成的31个代表团2631人参加,来自土家、苗、瑶、侗、白、维吾尔、壮、回、汉等22个民族的1991名运动员分别参加陀螺、射弩、秋千、高脚、板鞋、蹴球、键球、押加、民族健身操及表演项目比赛,是湖南省历届民族运动会规模最大、规格最高、参赛人数最多的一次.对本次运动会中320名志愿者的年龄抽样调查统计后得到样本频率分布直方图(如图),但是年龄组为的数据不慎丢失,请完成下面的解答.
(1)将频率分布直方图补充完整;
(2)估计本次省民运会中志愿者年龄的众数和中位数(结果保留两位小数);
(3)已知样本容量为16,现在需要从样本中30岁以下的志愿者中抽取2名志愿者谈对本次运动会的感想,求被抽中的志愿者中恰有一名志愿者年龄不小于25岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批苹果中随机抽取50个,其质量(单位:)的频数分布表如下:
分组 | ||||
频数 | 5 | 10 | 20 | 15 |
用分层随机抽样的方法从质量在和内的苹果中共抽取4个,再从抽取的4个苹果中任取2个,则有1个苹果的质量在内的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校学生会为了解高二年级600名学生课余时间参加中华传统文化活动的情况(每名学生最多参加7场).随机抽取50名学生进行调查,将数据分组整理后,列表如下:
参加场数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
占调查人数的百分比 | 8% | 10% | 20% | 26% | 18% | m% | 4% | 2% |
则以下四个结论中正确的是( )
A.表中m的数值为10
B.估计该年级参加中华传统文化活动场数不高于2场的学生约为108人
C.估计该年级参加中华传统文化活动场数不低于4场的学生约为216人
D.若采用系统抽样方法进行调查,从该校高二600名学生中抽取容量为30的样本,则分段间隔为15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部是矩形,其中米,米;上部是等边三角形,固定点为的中点.是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),是可以沿设施边框上下滑动且始终保持和平行的伸缩横杆.
(1)设与之间的距离为米,试将的面积(平方米)表示成关于的函数;
(2)求的面积(平方米)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB为圆O的直径,点E,F在圆O上,,矩形ABCD和圆O所在的平面互相垂直,已知,.
求证:平面平面CBF;
当时,求多面体FABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,不等式对恒成立.
(1)求函数的极值和函数的图象在点处的切线方程;
(2)求实数的取值的集合;
(3)设,函数,,其中为自然对数的底数,若关于的不等式至少有一个解,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com