分析 (1)联立直线l与直线y=x-1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;
(2)求出圆D:x2+y2+2y-3=0的圆心与半径,利用圆心距与半径和与差的关系,列出不等式,即可求出圆心C的横坐标a的取值范围.
解答 解:(1)联立得:$\left\{\begin{array}{l}2x-y-4=0\\ 2x-3y=0\end{array}\right.$,
解得:$\left\{\begin{array}{l}x=3\\ y=2\end{array}\right.$,
∴圆心C(3,2).
若k不存在,不合题意;
若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即$\frac{|3k+3-2|}{\sqrt{1+{k}^{2}}}$=1,
解得:k=0或k=-$\frac{3}{4}$,
则所求切线为y=3或y=-$\frac{3}{4}$x+3;
(2)圆D:x2+y2+2y-3=0的圆心(0,-1),半径为:2.
圆C的半径为1,圆心在直线l:2x-y-4=0上,可得圆心(a,2a-4).
圆C与圆D:x2+y2+2y-3=0有公共点,可得1≤$\sqrt{(a-0)^{2}+(2a-4+1)^{2}}≤3$,
解得0≤a≤$\frac{12}{5}$.
圆心C的横坐标a的取值范围:[0,$\frac{12}{5}$].
点评 此题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,涉及的知识有:两直线的交点坐标,直线的点斜式方程,两点间的距离公式,圆的标准方程,是一道综合性较强的试题.
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{ON}$ | B. | $\overrightarrow{AM}$ | C. | $\overrightarrow{AN}$ | D. | 2$\overrightarrow{AN}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 5 | B. | $\frac{5}{2}$ | C. | $\frac{5}{4}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com