分析 (1)令x=1,y=0,从而可求得f(0)=2;
(2)由题意知当x≥0时,f(x)≥2>0;再令x<0,则-x>0;从而可得f(x)f(-x)=2f(0);从而证明.
(3)由(2)中的讨论可知f(tanθ)≤2可化为f(tanθ)≤f(0),即tanθ≤0;从而解得.
解答 解:(1)令x=1,y=0,
则f(1)f(0)=2f(1),
∵f(1)>2,
∴f(0)=2;
(2)证明:当x≥0时,f(x)≥2>0;
当x<0时,-x>0;
f(x)f(-x)=2f(0);
故f(x)=$\frac{2f(0)}{f(-x)}$>0;
故f(x)>0对任意x∈R恒成立;
(3)∵当x≥0时,f(x)≥2>0;
∴当x<0时,f(x)=$\frac{2f(0)}{f(-x)}$=$\frac{4}{f(-x)}$<2;
∴f(tanθ)≤2可化为f(tanθ)≤f(0);
故tanθ≤0;
故θ∈(kπ+$\frac{π}{2}$,kπ+π],(k∈Z).
点评 本题考查了抽象函数的性质的判断与应用,同时考查了正切函数的性质的应用.
科目:高中数学 来源: 题型:选择题
A. | {2} | B. | {1,2} | C. | {3} | D. | {2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com