精英家教网 > 高中数学 > 题目详情
8.已知f(x)是定义在R上的函数,对任意的x、y∈R,都有f(x)f(y)=2f(x+y),且当x>0时,f(x)>2.
(1)求f(0)的值;
(2)证明:f(x)>0对任意x∈R恒成立;
(3)解关于θ的不等式f(tanθ)≤2.

分析 (1)令x=1,y=0,从而可求得f(0)=2;
(2)由题意知当x≥0时,f(x)≥2>0;再令x<0,则-x>0;从而可得f(x)f(-x)=2f(0);从而证明.
(3)由(2)中的讨论可知f(tanθ)≤2可化为f(tanθ)≤f(0),即tanθ≤0;从而解得.

解答 解:(1)令x=1,y=0,
则f(1)f(0)=2f(1),
∵f(1)>2,
∴f(0)=2;
(2)证明:当x≥0时,f(x)≥2>0;
当x<0时,-x>0;
f(x)f(-x)=2f(0);
故f(x)=$\frac{2f(0)}{f(-x)}$>0;
故f(x)>0对任意x∈R恒成立;
(3)∵当x≥0时,f(x)≥2>0;
∴当x<0时,f(x)=$\frac{2f(0)}{f(-x)}$=$\frac{4}{f(-x)}$<2;
∴f(tanθ)≤2可化为f(tanθ)≤f(0);
故tanθ≤0;
故θ∈(kπ+$\frac{π}{2}$,kπ+π],(k∈Z).

点评 本题考查了抽象函数的性质的判断与应用,同时考查了正切函数的性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合U={1,2,3,4},M={1,4},N={3,4},则集合∁U(M∪N)=(  )
A.{2}B.{1,2}C.{3}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P为圆C1:(x-3)2+(y-4)2=4上的动点
(1)若点Q为直线l:x+y-1=0上动点,求|PQ|的最小值与最大值;
(2)若M为圆C2:(x+1)2+(y-1)2=4上动点,求|PM|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若构成教室墙角的三个墙面分别记为α,β,γ,交线分别记为BA,BC,BD,教室内一点P到三墙面α,β,γ 的距离分别为3m,4m,1m,则点P与墙角B的距离为$\sqrt{26}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,AB=AC,D为BC边上一点,E为AD上一点,且满足∠BDE=2∠CED=∠BAC.求证:BD=2CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\left\{\begin{array}{l}{f(x-3),x>0}\\{2x-{x}^{3},x≤0}\end{array}\right.$,则f[f(5)]=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在正方体AC1中,A1E1=CE,A1F1=CF.求证:E1F1$\underset{∥}{=}$EF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,求证,$si{n}^{2}\frac{A}{2}$+$si{n}^{2}\frac{B}{2}$+$si{n}^{2}\frac{C}{2}$=1-2sin$\frac{A}{2}$sin$\frac{B}{2}$sin$\frac{C}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面积ABCD为矩形,PA⊥平向ABCD,E为PD的中点,AB=AP=1,AD=$\sqrt{3}$,试建立恰当的空间直角坐标系,求平面ACE的一个法向量.

查看答案和解析>>

同步练习册答案