【题目】已知函数.
(1)若函数的图象在点处的切线平行于轴,求函数在上的最小值;
(2)若关于的方程在上有两个解,求实数的取值范围.
【答案】(1);(2).
【解析】
(1)由题意得出可求得的值,利用导数求得函数的极值,结合函数的单调性可得出该函数在区间上的最小值;
(2)由参变量分离法可知:直线与函数的图象有两个交点,利用导数分析函数的单调性与极值,数形结合可得的取值范围,进而可求得实数的取值范围.
(1),,
由题意可得,解得.
,则,令,解得.
令,解得,此时函数单调递增;
令,解得,此时函数单调递减.
所以,函数在区间上单调递减,在区间上单调递增,
所以,当时,函数取得极小值即最小值,即;
(2)在有两解,即在有两解,
.
设,,令,得.
当时,;当时,.
所以,函数在上为增函数,在上为减函数.
当,;当时,,,
如下图所示:
由图象可知,当时,即当时,直线与函数的图象有两个交点.
因此,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知一个正四面体和一个正四棱锥,它们的各条棱长均相等,则下列说法:
①它们的高相等;②它们的内切球半径相等;③它们的侧棱与底面所成的线面角的大小相等;④若正四面体的体积为,正四棱锥的体积为,则;⑤它们能拼成一个斜三棱柱.其中正确的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆和圆,、为椭圆的左、右焦点,点在椭圆上,当直线与圆相切时,.
(I)求的方程;
(Ⅱ)直线与椭圆和圆都相切,切点分别为、,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)当时,判断直线与曲线的位置关系;
(2)若直线与曲线相交所得的弦长为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)当时,判断直线与曲线的位置关系;
(2)若直线与曲线相交所得的弦长为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.
(Ⅰ)求证:;
(Ⅱ)求证:四边形是平行四边形;
(Ⅲ)若,试判断二面角的大小能否为?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com