精英家教网 > 高中数学 > 题目详情

【题目】1是直角梯形,点,以为折痕将折起,使点到达的位置,且,如图2.

1)证明:平面平面

2)求点到平面的距离.

【答案】1)证明见解析;(2

【解析】

1)在图1中,连结,根据,得到四边形为菱形,则,在图2中,由 ,得到,利用线面垂直的判定定理得到,再利用面面垂直的判定定理证明平面平面.

2)取中点,连接,设点到平面的距离为,易证平面,则,且,再由(1,利用等体积法求解.

1)如图所示:

证明:在图1中,连结,由已知得

∴四边形为菱形,

连结于点

又∵在中,

在图2中,

,∴

由题意知

,又平面

∴平面平面

2)如图,

中点,连接,设点到平面的距离为

在直角梯形中,为中位线,则

由(1)得平面平面

所以,又

平面,又平面

所以,且

在三棱锥中,

所以

即点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12)已知数列的首项

1)求的通项公式;

2)证明:对任意的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

1)求出易倒伏玉米茎高的中位数

2)根据茎叶图的数据,完成下面的列联表:

抗倒伏

易倒伏

矮茎

高茎

3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.

1)请将列联表填写完整:

有接触史

无接触史

总计

有武汉旅行史

27

无武汉旅行史

18

总计

27

54

2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例,以下四个选项错误的是(

A.54周岁以上参保人数最少B.1829周岁人群参保总费用最少

C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群的80%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列的前项和为,满足,恰为等比数列的前3项.

1)求数列的通项公式;

2)求数列的前项和为;若对均满足,求整数的最大值;

3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=xR)的图象与x轴交点的横坐标构成一个公差为的等差数列,把函数fx)的图象沿x轴向左平移个单位,横坐标伸长到原来的2倍得到函数gx)的图象,则下列关于函数gx)的命题中正确的是( )

A.函数gx)是奇函数

B.gx)的图象关于直线对称

C.gx)在上是增函数

D.时,函数gx)的值域是[02]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),其上一点的焦点的距离为4.

(Ⅰ)求抛物线的方程;

(Ⅱ)过点的直线与抛物线分別交于两点(点均在轴的上方),若的面积为4,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20.

1)根据题意,请将下面的列联表填写完整;

选择“西游传说”

选择“千古蝶恋”

总计

成年人

未成年人

总计

2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.

附参考公式与表:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案