精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为 (其中为参数).现以坐标原点为极点轴的非负半轴为极轴建立极坐标标系,曲线的极坐标方程为.

(1)写出直线的普通方程和曲线的直角坐标方程;(2)求直线被曲线截得的线段的长度.

【答案】(1) .

(2) .

【解析】分析:(1) 直线的参数方程利用代入法消去参数直线的普通方程为

,利用 可得曲线的直角坐标方程;(2)代入并化简得,利用韦达定理结合直线参数方程的几何意义即可得结果.

详解(1)消去参数t,可得

故直线的普通方程为

,由即得

可得,

故曲线的直角坐标方程为

(2)方法一:(1)可知曲线表示(0,2)为圆心,2为半径的圆,

其中圆心到直线的距离为

所以直线被曲线截得的线段的长度为.

方法二:将代入并化简得,

因为直线过点P(0,1),所以设直线与曲线C的两交点分别为A,B

,所以,

所以

故直线被曲线截得的线段的长度为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆C: 的左右焦点分别是F1 , F2 , 离心率为 ,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,连接PF1 , PF2 , 设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1 , PF2的斜率分别为k1 , k2 , 若k≠0,试证明 为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1 , 直线C2的极坐标方程分别为ρ=4sinθ,ρcos( )=2
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲

已知函数

(1)时,求不等式的解集;

(2) |的解集包含,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA= ,连接CE并延长交AD于F

(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,是棱的中点.

(1)证明:平面

(2)若是棱的中点,求三棱锥的体积与三棱柱的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种产品,每年投入固定成本万元.此外,每生产件这种产品还需要增加投入万元.经测算,市场对该产品的年需求量为且当出售的这种产品的数量为(单位:百件)时,销售所得的收入约为(万元).

(1)若该公司这种产品的年产量为(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量的函数

(2)当该公司的年产量为多少时当年所得利润最大最大为多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差不为零,a1=25,且a1a11a13成等比数列.

(1)求{an}的通项公式;

(2) 是{an}的前n项和,求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为( )
A.(﹣1,1)
B.
C.(﹣1,0)
D.

查看答案和解析>>

同步练习册答案