精英家教网 > 高中数学 > 题目详情

已知椭圆>0)的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点,已知点的坐标为( ,0),点(0,)在线段的垂直平分线上,且,求的值.

(1)(2)

解析试题分析:(1)连接椭圆的四个顶点得到的菱形的面积为4即,在结合可解得的值。(2)分析可知直线斜率存在,可设其方程为,将直线方程和椭圆方程联立消去整理为关于的一元二次方程,由韦达定理可得根与系数的关系,其中一个根为另一个跟为点的横坐标。根据在线段的垂直平分线上和可求的值。需注意对为0时的讨论。
试题解析:(1)解:由,                 1分
,再由,得               2分
由题意可知,                   3分
解方程组 得: 
所以椭圆的方程为:                        4分
(2)解:由(1)可知.设点的坐标为,
直线的斜率显然所在,设为,则直线的方程为,             5分
于是两点的坐标满足方程组,由方程组消去并整理,
                                  6分
                     8分
设线段是中点为,则的坐标为
以下分两种情况:
①当时,点的坐标为.线段的垂直平分线为轴,于是

                          10分
②当时,线段的垂直平分线方程为
,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点为B(0,4),离心率,直线交椭圆于M,N两点。
(1)若直线的方程为,求弦MN的长;
(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线方程的一般式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线的焦点为,点,线段的中点在抛物线上. 设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)证明:圆轴必有公共点;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心在坐标原点O,且恰好与直线相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN轴于N,若动点Q满足(其中m为非零常数),试求动点的轨迹方程.
(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与垂直的直线与曲线C交于 B、D两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=, M, N是直线x=4上的两个动点,且·=0.

(1)求椭圆的方程;
(2)求MN的最小值;
(3)以MN为直径的圆C是否过定点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”的方程.
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的椭圆C的一个焦点为F(4,0),长轴端点到较近焦点的距离为1,A(x1,y1),B(x2,y2)(x1≠x2)为椭圆上不同的两点.
(1)求椭圆C的方程.
(2)若x1+x2=8,在x轴上是否存在一点D,使||=||?若存在,求出D点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线的方程为,过抛物线上一点()作斜率为的两条直线分别交抛物线两点(三点互不相同),且满足).
(1)求抛物线的焦点坐标和准线方程;
(2)设直线上一点,满足,证明线段的中点在轴上;
(3)当=1时,若点的坐标为,求为钝角时点的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案