精英家教网 > 高中数学 > 题目详情
15.函数f(x)的定义域为[-1,1],图象如图1所示;函数g(x)的定义域为[-1,2],图象如图2所示.A={x|f(g(x))=0},B={x|g(f(x))=0},则A∩B中元素的个数为(  )
A.1B.2C.3D.4

分析 结合图象,分别求出集合A,B,再根据交集的定义求出A∩B,问题得以解决.

解答 解:由图象可知,
若f(g(x))=0,
则g(x)=0或g(x)=1,
由图2知,g(x)=0时,x=0,或x=2,
g(x)=1时,x=1或x=-1
故A={-1,0,1,2},
若g(f(x))=0,
由图1知,f(x)=0,或f(x)=2(舍去),
当f(x)=0时,x=-1或0或1,
故B={-1,0,1},
所以A∩B={-1,0,1},
则A∩B中元素的个数为3个.
故选:C.

点评 本题考查了方程的根与函数的图象的关系应用及数形结合的思想应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.学校有两个食堂,现有3名学生前往就餐,则三个人在同一个食堂就餐的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等比数列{an}的各项均为正数,a1>1,a6+a7>a6a7+1>2,记{an}前n项积为Tn,则满足Tn>1的最大正整数n的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=min{x2-1,x+1,-x+1},其中min{x,y,z}表示x,y,z中的最小者.若f(a+2)>f(a),则实数a的取值范围为(  )
A.(-1,0)B.[-2,0]C.(-∞,-2)∪(-1,0)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若点P、Q均在椭圆$Γ:\frac{x^2}{a^2}+\frac{y^2}{{{a^2}-1}}=1$(a>1)上运动,F1、F2是椭圆Γ的左、右焦点,则$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}-2\overrightarrow{PQ}}|$的最大值为2a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O为坐标原点,点A(-1,2),若点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一个动点,则$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范围是(  )
A.[-1,0]B.[0,1]C.[1,3]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$f(x)=\frac{1}{3}{x^3}-{x^2}-3x+5$的零点的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若抛物线y2=2px(p>0)的焦点为F,其准线经过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦点,点M为这两条曲线的一个交点,且|MF|=p,则双曲线的离心率为(  )
A.$\frac{{2+\sqrt{2}}}{2}$B.$2+\sqrt{2}$C.$1+\sqrt{2}$D.$\frac{{1+\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线y=x-m与抛物线y2=2x相交于A(x1,y1),B(x2,y2)两点,O为坐标原点.
(1)当m=2时,证明:OA⊥OB;
(2)是否存在实数m,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案