精英家教网 > 高中数学 > 题目详情
已知几何体A-BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(1)求此几何体的体积V的大小;
(2)求异面直线DE与AB所成角的余弦值.
(1)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=1,
S梯形BCED=
1
2
×(4+1)×4=10

∴即该几何体的体积V=
1
3
S梯形BCED•AC=
1
3
×10×4=
40
3
.(5分)
(2)解法1:过点B作BFED交EC于F,连接AF,
则∠FBA或其补角即为异面直线DE与AB所成的角.(7分)
在△BAF中,∵AB=4
2
,BF=AF═
16+9
=5

cos∠ABF=
BF2+AB2-AF2
2BF•AB
=
2
2
5

即异面直线DE与AB所成的角的余弦值为
2
2
5
.(12分)
解法2:
以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.(6分)
则A(4,0,0),B(0,4,0),D(0,4,1),E(0,0,4)
DE
=(0,-4,3),
AB
=(-4,4,0)
,(8分)
cos<
DE
AB
>=-
2
2
5

∴异面直线DE与AB所成的角的余弦值为
2
2
5
.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四面体ABCD中,ABADBD=2,BCDC=4,二面角ABDC的大小为60°,求AC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,AC与B1D所成的角为(  )
A.
π
6
B.
π
4
C.
π
3
D.
π
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体ABCD-A′B′C′D′中,直线D′A与DB所成的角可以表示为(  )
A.∠D′DBB.∠AD′C′C.∠ADBD.∠DBC′

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体ABCD-A1B1C1D1中,E、F分别为棱BC和棱CC1的中点,则异面直线AC和EF所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在空间四边形ABCD中,E,F分别是AB,CD的中点.
(1)若AB=BC=CD=AD=AC=BD=2a,求EF的长;
(2)若AD=BC=2a,EF=
3
a
,求异面直线AD与BC所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,且PD=
2
AB
,点E为PB的中点,则AE与平面PDB所成的角的大小为______.

查看答案和解析>>

同步练习册答案