精英家教网 > 高中数学 > 题目详情

如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:平面
(2)求点到平面的距离.

(1)证明见解析;(2)

解析试题分析:(1)先利用平面几何知识与线面垂直的性质证线线垂直,由线线垂直得到线面垂直,再由线面垂直得到线线垂直;(2)点到平面的距离是棱锥D-PCB顶点D到底面的高,求出棱锥的体积和底面三角形PCB的面积,可以求出点到平面的距离.
试题解析:(1)如图,连接

由3AD=DB知,点D为AO的中点,
又∵AB为圆O的直径,

知,
为等边三角形,

∵点在圆所在平面上的正投影为点
平面
平面

由PDÌ平面PAB,AOÌ平面PAB,且
平面.
(2)由(1)可知


为等腰三角形,则
设点到平面的距离为
得,

解得
考点:1.直线与平面垂直的判定;2.点到平面距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,分别为的中点.

(1)求证:EF∥平面;
(2)若平面平面,且º,求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥,底面为平行四边形,侧面底面.已知为线段的中点.

(Ⅰ)求证:平面
(Ⅱ)求面与面所成二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长方体中,, E、 分别为的中点.

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形所在平面与圆所在的平面相交于,线段为圆的弦,垂直于圆所在的平面,垂足为圆上异于的点,设正方形的边长为,且.

(1)求证:平面平面
(2)若异面直线所成的角为与底面所成角为,二面角所成角为,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角.

(1)求证:平面A1B1C⊥平面B1BCC1
(2)求二面角A—B1C—B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱中,已知平面平面,.

(1)求证:
(2)若为棱的中点,求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,

(1)求证:
(2)若 ,在棱上确定一点P, 使二面角的平面角的余弦值为

查看答案和解析>>

同步练习册答案