精英家教网 > 高中数学 > 题目详情

【题目】已知实数λ>0,设函数f(x)=eλx
(Ⅰ)当λ=1时,求函数g(x)=f(x)+lnx﹣x的极值;
(Ⅱ)若对任意x∈(0,+∞),不等式f(x)≥0恒成立,求λ的最小值.

【答案】解:(Ⅰ)λ=1时,g(x)=ex﹣x,g′(x)=ex﹣1,

令g′(x)<0,解得:x<0,令g′(x)>0,解得:x>0,

故g(x)在(﹣∞,0)递减,在(0,+∞)递增,

故g(x)无极大值,极小值是g(0)=1;

(Ⅱ)当0<x≤1时,易知不等式eλx ≥0恒成立,

x>1时,由题设得不等式λeλx≥lnx,即λxeλx≥lnxelnx(*)恒成立,

设φ(t)=tet(t>0),

则由φ′(t)=et(1+t)>0,

知φ(t)在(0,+∞)递增,

于是,x>1时,由(*)知φ(λx)≥φ(lnx),

即λ≥ 在(1,+∞)恒成立,

故所求λ的最小值即为函数p(x)= (x>1)的最大值,

∵p′(x)= ,故1<x<e时,p′(x)>0,p(x)递增,

x>e时,p′(x)<0,函数p(x)递减,

综上,λmin=p(x)max=p(e)=


【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(2)进行参变分离将问题转化为λ≥ 在(1,+∞)恒成立,所求λ的最小值即为函数P(x)的最大值,根据函数的单调性求出λ的最小值即可.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的最大(小)值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】不等式x6﹣(x+2)3+x2≤x4﹣(x+2)2+x+2的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上,且PE=2EB.

(1)求证:平面PAB⊥平面PCB;
(2)求证:PD∥平面EAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1 , l2 , 直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为(  )
A.16
B.14
C.12
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线C由上半椭圆 和部分抛物线 连接而成,C1与C2的公共点为A,B,其中C1的离心率为

(1)求a,b的值;
(2)过点B的直线l与C1 , C2分别交于点P,Q(均异于点A,B),是否存在直线l,使得PQ为直径的圆恰好过点A,若存在直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数f(x)= (a>0且a≠1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos x,sin x), =(cos ,﹣sin ),若f(x)= ﹣| |2
(1)求函数f(x)的单调减区间;
(2)若x∈[﹣ ],求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是非零不共线的向量,设 = + ,定义点集M={K| = },当K1 , K2∈M时,若对于任意的r≥2,不等式| |≤c| |恒成立,则实数c的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x+m)﹣nlnx.
(1)当m=1,n>0时,求函数f(x)的单调减区间;
(2)n=1时,函数g(x)=(m+2x)f(x)﹣am,若存在m>0,使得g(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案