精英家教网 > 高中数学 > 题目详情
16.向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),则$\overrightarrow{a}$-2$\overrightarrow{b}$的模等于$\sqrt{17}$.

分析 求出$\overrightarrow{a}$-2$\overrightarrow{b}$的坐标,带入模的公式计算即可.

解答 解:∵$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),
∴$\overrightarrow{a}$-2$\overrightarrow{b}$=(2,3)-(-2,4)=(4,-1),
故$\overrightarrow{a}$-2$\overrightarrow{b}$的模是:$\sqrt{16+1}$=$\sqrt{17}$,
故答案为:$\sqrt{17}$.

点评 本题考查了平面向量的坐标运算与模长的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图,在棱长均为2的正三棱柱ABC-A1B1C1中,点M是侧棱AA1的中点,点P、Q分别是侧面BCC1B1、底面ABC内的动点,且A1P∥平面BCM,PQ⊥平面BCM,则点Q的轨迹的长度为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{3}$.M,N分别为BC和AA1的中点,P为侧棱BB1上的动点.
(Ⅰ)求证:平面APM⊥平面BB1C1C;
(Ⅱ)若P为线段BB1的中点,求证:CN∥平面AMP;
(Ⅲ)试判断直线BC1与PA能否垂直.若能垂直,求出PB的值;若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若复数z满足|z|=1(i为虚数单位),则|z-2i|的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+ax2(x>0),g(x)=bx,其中a,b是实数.
(1)若$a=-\frac{1}{2}$,求f(x)的最大值;
(2)若b=2,且直线$y=g(x)-\frac{3}{2}$是曲线y=f(x)的一条切线,求实数a的值;
(3)若a<0,且$b-a=\frac{1}{2}$,函数h(x)=f(x)-g(2x)有且只有两个不同的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)=ax2-(2a-1)x-lnx(a为常数,a≠1).
(Ⅰ)当a<0时,求函数f(x)在区间[1,2]上的最大值;
(Ⅱ)记函数y=f(x)图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,当该区域的面积为2时,z=x+2y的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数与函数y=x相等的是(  )
A.$y={({\sqrt{x}})^2}$B.$y=\sqrt{x^2}$C.$y={({\root{3}{x}})^3}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若x是方程${2^x}-\frac{3}{{{2^{x-1}}}}=5$的解,化简:|x-3|+x.

查看答案和解析>>

同步练习册答案