精英家教网 > 高中数学 > 题目详情

【题目】已知α、β是三次函数f(x)= x3+ ax2+2bx(a,b∈R)的两个极值点,且α∈(0,1),β∈(1,2),则 的取值范围是

【答案】
【解析】解:f′(x)=x2+ax+2b
∵α,β是f(x)的极值点,
所以α,β是x2+ax+2b=0的两个根
∴α+β=﹣a,αβ=2b
∵α∈(0,1),β∈(1,2),
∴1<α+β<3,0<αβ<2
∴1<﹣a<3,0<2b<2

作出不等式组∴ 的可行域
表示可行域中的点与(1,2)连线的斜率
有图知,当当点为(﹣3,1)和(﹣1,0)时分别为斜率的最小、最大值
所以此时两直线的斜率分别是
所以答案是

【考点精析】解答此题的关键在于理解函数的极值的相关知识,掌握极值反映的是函数在某一点附近的大小情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中,是真命题的是(
A.?x0∈R,使得e ≤0
B.
C.?x∈R,2x>x2
D.a>1,b>1是ab>1的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣x2(1≤x≤2)与g(x)=x+2的图象上存在关于x轴对称的点,则实数a的取值范围是(
A.[﹣ ,+∞)
B.[﹣ ,0]
C.[﹣2,0]
D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程是 (t是参数),以坐标原点为极点,x轴的正半轴为极轴,且取相同的长度单位建立极坐标系,圆C的极坐标方程为ρ=2 cos(θ+ ).
(1)求直线l的普通方程与圆C的直角坐标方程;
(2)设圆C与直线l交于A、B两点,若P点的直角坐标为(1,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出结论:x+ ≥n+1(n∈N*),则a=(
A.2n
B.3n
C.n2
D.nn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,ABCDAB4BCCD2AA12EE1分别是棱ADAA1的中点

1F是棱AB的中点,证明:直线EE1平面FCC1

2证明:平面D1AC平面BB1C1C

3求点D到平面D1AC的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是秦九韶算法的一个程序框图,则输出的S为(
A.a1+x0(a3+x0(a0+a2x0))的值
B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值
D.a2+x0(a0+x0(a3+a1x0))的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求证:AD⊥PB;
(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的极大值点,则a的取值范围为(
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)

查看答案和解析>>

同步练习册答案